期刊文献+

A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al2O3 catalyst 被引量:8

A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al2O3 catalyst
原文传递
导出
摘要 The hydrogenation of 2-ethylanthraquinone (eAQ), 2-tert-amylanthraquinone (taAQ) and their mixtures with molar ratios of 1:1 and 1:2 to the corresponding hydroquinones (eAQH2 and taAQH2) were studied over a Pd/Al2O3 catalyst in a semi-batch slurry reactor at 60 ℃ and at 0.3 MPa. Compared to eAQ, TaAQ exhibited a significantly slower hydrogenation rate (about half) but had a higher maximum yield of H2O2 and a smaller amount of degradation products. This can be ascribed to the longer and branched side chain in taAQ, which limits its accessibility to the Pd surface and its diffusion through the pores of the catalyst. Density functional theory calculations showed that it is more difficult for taAQ to adsorb onto a Pd (111) surface than for eAQ. The hydrogenation of the eAQ/taAQ mixtures had the slowest rates, lowest H2O2 yields and the highest amounts of degradation products. The hydrogenation of 2-ethylanthraquinone (eAQ), 2-tert-amylanthraquinone (taAQ) and their mixtures with molar ratios of 1:1 and 1:2 to the corresponding hydroquinones (eAQH2 and taAQH2) were studied over a Pd/Al2O3 catalyst in a semi-batch slurry reactor at 60 ℃ and at 0.3 MPa. Compared to eAQ, TaAQ exhibited a significantly slower hydrogenation rate (about half) but had a higher maximum yield of H2O2 and a smaller amount of degradation products. This can be ascribed to the longer and branched side chain in taAQ, which limits its accessibility to the Pd surface and its diffusion through the pores of the catalyst. Density functional theory calculations showed that it is more difficult for taAQ to adsorb onto a Pd (111) surface than for eAQ. The hydrogenation of the eAQ/taAQ mixtures had the slowest rates, lowest H2O2 yields and the highest amounts of degradation products.
出处 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2017年第2期177-184,共8页 化学科学与工程前沿(英文版)
基金 This work is supported by financial support from the National Natural Science Foundation of China (Grant No. 21676184).
关键词 HYDROGENATION hydrogen peroxide ANTHRAQUINONE Pd catalyst AO process hydrogenation, hydrogen peroxide, anthraquinone, Pd catalyst, AO process
  • 相关文献

同被引文献48

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部