期刊文献+

Engineering synthetic optogenetic networks for biomedical applications 被引量:1

Engineering synthetic optogenetic networks for biomedical applications
原文传递
导出
摘要 Background: Recently, optogenetics based on genetically encoded photosensitive proteins has emerged as an innovative technology platform to revolutionize manipulation of cellular behavior through fight stimulation. It has enabled user defined control of various cellular behaviors with spatiotemporal precision and minimal invasiveness, creating unprecedented opportunities for biomedical applications. Results: This article reviews current advances in optogenetic networks designed for the treatment of human diseases. We highlight the advantages of these optogenetic networks, as well as emerging questions and future perspectives. Conclusions: Various optogenetic systems have been engineered to control biological processes at all levels using light and applied for numerous diseases, such as metabolic disorders, cancer, and immune diseases. Continued development of optogenetic modules will be necessary to precisely control of gene expression magnitude towards clinical medical practice in the context of real-world problems. Background: Recently, optogenetics based on genetically encoded photosensitive proteins has emerged as an innovative technology platform to revolutionize manipulation of cellular behavior through fight stimulation. It has enabled user defined control of various cellular behaviors with spatiotemporal precision and minimal invasiveness, creating unprecedented opportunities for biomedical applications. Results: This article reviews current advances in optogenetic networks designed for the treatment of human diseases. We highlight the advantages of these optogenetic networks, as well as emerging questions and future perspectives. Conclusions: Various optogenetic systems have been engineered to control biological processes at all levels using light and applied for numerous diseases, such as metabolic disorders, cancer, and immune diseases. Continued development of optogenetic modules will be necessary to precisely control of gene expression magnitude towards clinical medical practice in the context of real-world problems.
出处 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2017年第2期111-123,共13页 中国电气与电子工程前沿(英文版)
关键词 synthetic biology mammalian designer cells OPTOGENETICS synthetic gene circuits gene- and cell-basedtherapy synthetic biology mammalian designer cells optogenetics synthetic gene circuits gene- and cell-basedtherapy
  • 相关文献

参考文献1

二级参考文献3

共引文献1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部