摘要
考虑了装备使用时间、行驶里程和配备时间等影响备件消耗的多种因素,依据装备备件的消耗特点,在分析偏最小二乘回归方法原理的基础上,运用方法对小样本数据条件下装备备件的消耗数量进行预测.应用示例表明,偏最小二乘回归方法比传统多元回归分析法、逐步多元回归分析法和删除多元回归分析法具有更高的预测精度.
Through making a analysis of the factors which include operation time, actual service life and the age of the equipment and the character of spare parts consumption, the partial least-squares regression is applied to solve the problem of spare parts consumption prediction when the sample is small. The example indicates that partial least-squares regression is much more accurate than traditional multiple linear regression, stepwise multiple linear regression and erasing multiple linear regression.
作者
刘浏
罗广旭
魏东涛
刘妍
赵徐成
王保成
LIU Liu LUO Guang-xu WEI Dong-tao LIU Yan ZHAO Xu-cheng WANG Bao-cheng(Department of Aviation Four Stations, Air Force Logistics College, Xuzhou 221000, China Department of Basic, Air Force Logistics College, Xuzhou 221000, China)
出处
《数学的实践与认识》
北大核心
2017年第10期122-126,共5页
Mathematics in Practice and Theory
关键词
偏最小二乘回归
小样本
备件消耗
partial least-squares regression
small sample
spare parts consumption