期刊文献+

回归分析与基于MIV的RBF神经网络在PM2.5的相关因素分析中的应用 被引量:9

The Application of Regression Analysis and RBF Neural Network Based on MIV in the Related Factors Analysis of PM2.5
原文传递
导出
摘要 PM2.5作为大气首要污染物,严重影响着人们的身体健康.为了研究影响PM2.5的相关指标,以武汉市的空气数据为研究对象,通过多元线性回归、偏最小二乘回归、基于MIV的RBF神经网络回归等方法对AQI中6个基本监测指标的PM2.5(含量)与其它5项分指标及其对应污染物(含量)之间的相关性进行分析;通过比较,基于MIV的RBF神经网络回归模型拟合度达到0.9302,效果最好,而且也优于BP人工神经网络回归算法,因此得出了精确可靠的影响PM2.5的指标权重大小,为减排PM2.5提供了可靠的理论依据. PM2.5, as primary atmospheric pollutants, seriously affects people's health. In order to study the related indicators of PM2.5, this paper researches air data set of Wuhan city, through multiple linear regression, partial least squares regression and RBF neural network regression based on MIV, in six basic monitoring index of AQI, Correlation analysis is researched among PM2.5 (content) and the corresponding pollutants (content) of other five indicators; By comparison, the model fitting degree of RBF neural network regression based on MIV is 0.9302,and the result is not only best, but also superior to the BP artificial neural network regression algorithm. The accurate and reliable weight size is obtained about influencing indicators of PM2.5, this paper provides the reliable theory basis for the emission reduction of PM2.5.
作者 董健卫 陈艳美 孟盼 孙圣兰 DONG Jian-wei CHEN Yan-mei MENG Pan SUN Sheng-lan(Department of Mathematics in School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou 510665, China School of Medical Business, Guangdong Pharmaceutical University, Guangzhou 510006, China)
出处 《数学的实践与认识》 北大核心 2017年第10期127-136,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(11501584 11402057) 广东省普通高校青年创新人才项目(2014KQNCX137) 广州市哲学规划项目(2016GZYB09)
关键词 PM2.5 空气质量指数(AQI) OLS回归 PLS回归 RBF神经网络回归 PM2.5 Air quality index Ordinary least squares regression Partial least squares regression RBF neural network regression
  • 相关文献

参考文献7

二级参考文献61

共引文献160

同被引文献114

引证文献9

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部