摘要
应用锥不动点定理并结合Banach空间中的半序结构,研究了一类梁方程的可解性问题.不仅得到了梁方程正解的存在性结果,并且讨论了梁方程正解对参数的依赖性.注意到梁方程中含有正参数λ和L^p-可积函数,获得的结果是新的,并从本质上推广了已有文献的结果.
Using fixed point techniques combining with partially ordered structure of Banach space, we consider a solvable problem for a beam equation. We not only establish the existence results of the beam equation, but we discuss the dependence of positive solution on a parameter. Noting that the beam equation contains a positive parameter and a Lp-integrable function, our results are new, which are complement of previously known results.
作者
邱镜亮
QIU Jing-liang(School of Applied Science, Beijing Information Science &Technology University, Beijing 100192, China)
出处
《数学的实践与认识》
北大核心
2017年第10期262-269,共8页
Mathematics in Practice and Theory
基金
国家自然科学基金(9011623903)
北京市教委科技计划项目(71E1710957)