期刊文献+

射影平面上k-inhibitor模型的构作及其性质

A Construction and Its Properties of κ-inhibitor Model from the Projective Plane
原文传递
导出
摘要 κ-inhibitor模型是一个能够检测带有抑制因子的群测模型,它在许多领域有着广泛的应用.在m^2阶射影平面上构作了κ-inhibitor模型,计算了它的参数并研究了它的性质. A k-inhibitor model is a inhibitor model of group testing. It is widely used in many areas. The k-inhibitor models on the projective plane with order m2 are constructed, and its parameters are calculated, and its properties are studied.
作者 孙海燕 徐峰 SUN Hai-yan XU Feng(Department of Public Basic Courses Teaching, Zhengzhou Technology and Business University, Zhengzhou 451400, China Office of Academic Affairs, Xuanhua Science and Technology Vocational College, Xuanhua 075100, China)
出处 《数学的实践与认识》 北大核心 2017年第10期292-296,共5页 Mathematics in Practice and Theory
关键词 k-inhibitor模型 (d r k)-disjunct矩阵 射影平面 抑制因子 k-inhibitor model (d, r, k)-disjunct matrix projective plane inhibitor
  • 相关文献

参考文献1

二级参考文献6

  • 1YEH H G. d-disjunct Matrices:Bounds and Lovasz Local Lemma [J]. Discrete Mathematics,2002,253:97-107,
  • 2MACULA A J. Nonadaptive Grop Testing with Error Resistant d-disjunct Matrices [ J ]. Discrete Applied Mathematices, 1998, 80.217-282.
  • 3CHEN Hong-bin, HWANG F K. Exploring the Missing Link Among d-separable, d-separable and d-disjunct Matrices [J ]. Discrete Applied Mathematices, 2007,155 : 662-664.
  • 4DU Ding-zhu, HWANG F K. Pooling Designs and Nonadaptive Gromp Testing [ M]. Singepore: Word Scientific ,2006.40-44.
  • 5HUANG Ta-yuan, WENG Chih-wen. Pooling Spaces and Nonadaptive Pooling Designs [ J ]. Discrete Mathematics, 2004,282: 163-169.
  • 6MACULA A J. Error-correcting Nonadaptive Group Testing with (d, e)-disjunct Matrices [J]. Discrete Applied Mathematics, 1997,80: 217-222.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部