期刊文献+

儿童原发性肾性糖尿1例临床及基因突变分析 被引量:2

The clinical manifestation and gene mutation of primary renal glucosuria in a child
下载PDF
导出
摘要 目的探讨肾性糖尿的临床特点及基因突变。方法分析1例肾性糖尿患儿的临床资料及基因检测结果。结果患儿,女,2岁10个月。尿糖++++,24小时尿糖22.4 g。父亲曾有尿糖阳性。提取患儿及父母外周血DNA,聚合酶链反应扩增SLC5A2基因外显子及与内含子拼接区进行测序分析。结果显示,患儿存在剪接位点突变c.127-16C>A(纯合),其父母均为杂合突变,Clin Var数据库将此变异归类为致病性变异。结论患儿确诊为原发性肾性糖尿,SLC5A2基因突变是其致病原因。 ObjectiveTo explore the clinical manifestation and gene mutation of primary renal glucosuria (PRG). MethodsThe clinical data and gene detection results of a child with PRG were analyzed. ResultsA girl aged 2 years and 10 mouths had glucose ++++ by urine dipstick analysis and 22.4 g of the 24 h urine glucose. Her father was urine glucose positive. Genome DNA was extracted from peripheral blood of the girl and her parents, SLC5A2 gene were amplifed by PCR for sequencing, including exons and splicing areas. The results showed a homozygous point mutation (c.127-16C〉A) in girl, and both of her patents had the same heterozygous mutation. This mutation had been classifed to pathogenic mutations by ClinVar data base. ConclusionsThe diagnosis of PRG is confrmed in this child and SLC5A2 gene mutation is the cause.
出处 《临床儿科杂志》 CSCD 北大核心 2017年第6期418-420,共3页 Journal of Clinical Pediatrics
基金 国家自然科学基金资助项目(No.81370930 No.81371903 No.81472051)
关键词 原发性肾性糖尿 SLC5A2基因 SGLT2蛋白 基因突变 primary renal glucosuria SLC5A2 gene SGLT2 protain gene mutation
  • 相关文献

参考文献2

二级参考文献14

  • 1Calado J, Loeffler J, Sakallioglu O, et al. Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt- wasting[J]. Kidney Int, 2006, 69(5): 852-855. DOI:10.1038/sj. ki.5000194.
  • 2Calado J, Sznajer Y, Metzger D, et al. Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion[J]. Nephrol Dial Transplant, 2008, 23(12): 3874-3879. DOI: 10.1093/ndt/gfn386.
  • 3Santer R1, Calado J. Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target[J]. Clin J Am Soc Nephrol, 2010, 5(1): 133-14-1. DOI: 10.2215/CJN.04010609.
  • 4Yu L, Lv JC, Zhou X J, et al. Abnormal expression and dysfunction of novel SGLT2 mutations identified in familial renal glucosuria patients[J]. Hum Genet, 2011, 129(3): 335- 344. DOI: 10.1007/s00439-010-0927-z.
  • 5Brown GK. Glucose transporters: Structure, function and consequences of deficiency[J]. J Inherit Metab Dis, 2000, 23(3): 237-246.
  • 6Wang X, Zhao X, Wang X, et al. Two novel HOGA1 splicing mutations identified in a chinese patient with primary hyperoxalufia type 3[J]. Am J Nephrol, 2015, 42(1): 78- 84. DOI: 10.11591000439232.
  • 7You G, Lee WS, Barros EJ, et al. Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney[J]. J Biol Chem, 1995, 270(49): 29365- 29371. DOI: 10.1074/jbc.270.49.29365.
  • 8Quamme GA, Freeman HJ. Evidence for a high-affinity sodium -dependent D-glucose transport system in the kidney[J]. Am J Physiol, 1987, 253(1 Pt 2): F151-F157.
  • 9Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease[J]. J Intern Med, 2007, 261(1): 44-52. DOI: 10.1111/j. 1365-2796.2006.01746.x.
  • 10Kanai Y, Lee WS, You G, et al. The human kidney low affinity Na(+ )/glucose cotransporter SGLT2: delineation of the major renal reabsorptive mechanism for D- glucose[J]. J Clin Invest, 1994, 93(1): 397-404. DOI: 10.1172/JCI116972.

共引文献14

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部