期刊文献+

自适应调节的隐节点神经网络结构优化算法 被引量:3

Adjustable hidden node algorithm for optimal neural network architecture
下载PDF
导出
摘要 为解决现有神经网络算法易陷入局部最优化的问题,根据隐节点对整个网络的贡献值大小,提出一种自适应的动态隐节点调节策略。根据网络的节点容量与输出精度,建立一个资源分配机制,结合隐节点的删除与分裂策略,实现在网络学习过程中对隐节点自适应地增加或删除,形成一个节点利用率高且结构分布合理的神经网络系统。实验结果表明,在不同信号下,该算法能够将误差控制在一个较为合理的数值内,保持较快的收敛速度,有效解决局部最优化问题。 To solve the problem that the neural network algorithm is easy to fall into local optimization,an adaptive strategy of hidden node,according to the size of contribution of hidden nodes on the whole network,was proposed.A resource allocation mechanism was established according to fitting accuracy and output precision of the network.Hidden nodes deletion and split policy were combined,to form the neural networks in which node utilization was high and the structure was reasonably distributed.Experimental results show that this algorithm can get the error value at a more reasonable value and maintain at a rapid convergence rate under different signals.It can effectively solve the problem of local optimization.
出处 《计算机工程与设计》 北大核心 2017年第6期1664-1667,1685,共5页 Computer Engineering and Design
关键词 神经网络 自适应 隐节点 结构优化 调节策略 neural networks adaptive hidden node optimize structure regulation strategies
  • 相关文献

参考文献2

二级参考文献30

  • 1MA L,KHORASANI K. Constructive feedforward neural networks using Hermite poly nomial activation function[J]. IEEE Transactions on Neural Network, 2005, 16(4): 821833.
  • 2ISLAM Monirual, SATTAR A, AMIN F, YAO Xin, MURASE K. A new adaptive merging and growing algorithm for designing artificial neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 2009, 39(3): 705722.
  • 3KRASKOV A, STOGBAUER H, GRASSBERGER P. Estimating mutual information[J]. Phys Rev E, Sta Plasmas Fluids Relat Interdiscip Top, 2004, 69( 0661138): 1-16.
  • 4HONG Jie, HU Baogang. Twophase construction of multilayer perceptions using information theory[J]. IEEE Transactions on Neural Network, 2009, 20(4): 542-550.
  • 5]LIU Yinyin, STARZYK J A, ZHU Zhen. Optimized approximation algorithm in neural networks without overfitting[J]. IEEE Transactions on Neural Network, 2008, 19(6): 983-995.
  • 6HASSIBI B, STORK D, WOLFF G, WATANABE T. Optimal brain surgeon: extensions and performance comparisons[C]//Adavances in Neural Informati on Processing Systems 6. San Mateo, USA: Morgan Kaufman, 1994: 263-270.
  • 7FAHLMAN S E, LEBIERE C. The cascade correlation learning architecture[C]//Advances in Neural Information Processing Systems 2. San Mateo, USA: Morgan Kaufman, 1990: 524-532.
  • 8GAOCun-xiao ZHUShao-lan FENGLi etal(高存孝 朱少岚 冯莉 等).中国激光,2010,37(4):1501-1501.
  • 9HUANGMin-shuang HUANGJun-fen(黄民双 黄军芬).光子学报,2011,40(9):1428-1428.
  • 10XIAOShang-hui LILi(肖尚辉 李立).光学技术,2009,35(6):897-897.

共引文献14

同被引文献49

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部