期刊文献+

旋转环状周期结构参激振动分析

Parametric Vibration of Rotational Ring-Shaped Periodic Structures
下载PDF
导出
摘要 针对旋转环状周期结构的参激振动问题,在惯性坐标系下采用能量法建立了时变弹性动力学模型.为了获得系统的动力稳定性,采用坐标变换方法消除了该模型的时变性,然后根据经典振动理论得到了系统的特征值.根据该特征值分析了模态特性和不稳定性.结果表明:在旋转支撑作用下,系统的固有频率发生分裂;对于某些转速,系统表现出发散或颤振不稳定.此外,利用Floquét理论计算了系统的不稳定域和动态响应,并将其与解析预测进行对比.该研究有助于快速分析该类参激系统的动力稳定性,并获得指导工程实践的解析结果. This work aims at the parametric vibration of rotational ring-shaped periodic structures. An elastic model of the structure is developed by using energy method in the inertial coordinate,and the eigenvalues are obtained by using general vibration theory after the coordinate transformation. The modal characteristics and the unstable bounda-ries are identified by the eigenvalues. The results show that natural frequency splittingcan occur due to the effect of rotating supports,and there exist divergence and flutter instabilities at certain rotating speed. Besides,the unstable regions and the dynamic response are obtained by using the Floquét theory for the verification on analytical estima-tions. The research contributes to the optimization of the analysis of dynamic instability for similar structures,and the analytical results are obtained to guide the practice in engineering.
出处 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2017年第6期572-578,共7页 Journal of Tianjin University:Science and Technology
基金 国家重点基础研究发展计划(973计划)资助项目(2013CB035403) 国家高技术研究发展计划(863计划)资助项目(2012AA04) 国家自然科学基金资助项目(51175370) 天津市应用基础与前沿技术研究计划重点资助项目(13JCZDJC34300) 天津市应用基础与前沿技术研究计划资助项目(14JCYBJC18800)~~
关键词 环状周期结构 坐标变换 特征值 不稳定性预测 ring-shaped periodic structure coordinate transformation eigenvalues instability prediction
  • 相关文献

参考文献1

二级参考文献21

  • 1Yu R C, Mote C D. Vibration and parametric excitation in asymmetric circular plates under moving loads[J]. Journal of Sound and Vibration, 1987, 119(3): 409- 427.
  • 2Rourke A K, McWilliam S, Fox C H J. Multi-mode trimming of imperfect thin rings using masses at pre- selected locations [J]. Journal of Sound and Vibration,2002, 256(2): 319-345.
  • 3Kim M, Moon J, Wickert J A. Spatial modulation of repeated vibration modes in rotationally periodic struc- tures[J]. Journal of Vibration and Acoustics, Transactions oftheASME, 2000, 122(1) : 62-68.
  • 4Tanna R P, Lim T C. Modal frequency deviations in estimating ring gear modes using smooth ring solutions [J]. Journal of Sound and Vubration, 2004, 269 (3/4/5) : 1099-1110.
  • 5Kim Y H, Ha S K. Analysis of a disk-type stator for the piezoelectric ultrasonic motor using impedance matrix [J]. Journal of Sound and Vibration, 2003, 263 (3) : 643-663.
  • 6Chang J Y, Wickert J A. Response of modulated doublet modes to traveling wave excitation [J]. Journal of Sound and Vibration, 2000, 242(1): 69-83.
  • 7Wu X, Parker R G. Vibration of rings on a general elas- tic foundation [J]. Journal of Sound and Vibration, 2006, 295(1/2) : 194-213.
  • 8Fox C H J. A simple theory for the analysis and correc- tion of frequency splitting in slightly imperfect rings [J]. Journal of Sound and Vibration, 1990, 142(2) : 227- 243.
  • 9Rourke A K, McWilliam S, Fox C H J. Multi-mode trimming of imperfect thin rings using masses at pre- selected locations [J]. Journal of Sound and Vibration, 2002, 256(2): 319-345.
  • 10Fox C H J, Hwang R S. McWilliam S. The in-plane vibration of thin rings with in-plane profile varia- tions (part II) : Application to nominally circular rings [J]. Journal of Sound and Vibration, 1999, 220(3) : 517-539.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部