期刊文献+

非线性时滞系统的未知方向自适应学习控制 被引量:4

Unknown Direction Adaptive Learning Control for Nonlinear Time-delay Systems
下载PDF
导出
摘要 针对一类控制方向未知的非参数化不确定非线性时滞系统的控制问题,设计了一种鲁棒自适应学习控制算法。在控制器设计中引入Nussbaum增益函数,避免对系统控制方向未知问题的讨论,进而利用双曲正切函数的有界性,为参数估计值设定估计界,采用线性参数化的Fourier级数展开对周期期望输入函数进行估计,保证学习算法的鲁棒性。理论分析表明,所提自适应学习控制律能够保证系统闭环信号的有界性,且系统误差能够渐近地收敛于零。最后通过数值仿真进一步验证了所提控制算法的有效性。 A robust adaptive learning control algorithm is proposed for a class of uncertain nonlinear time-delay systems with unknown control direction. Nussbaum gain function is introduced in controller design, so as to avoid the discussion of unknown control direction, then by using of the boundness of hyperbolic tangent function and setting the boundaries of the estimated value, the linear parametric Fourier series are used to estimate the period expected input function and ensure the robustness of the learning algorithm. Theoretical analysis shows the proposed adaptive learning control law can ensure the boundness of the closed-loop system signal, and the error of the system can also converge to zero asymptotically. Finally, numerical simulation results further prove the effectiveness of the algorithm.
出处 《控制工程》 CSCD 北大核心 2017年第6期1170-1174,共5页 Control Engineering of China
基金 国家自然科学基金(61273070 61203092) 江苏省产学研前瞻性联合研究项目(BY2015019-21) 高等学校学科创新引智计划(B12018) 江苏高校优势学科建设工程项目资助 中央高校基本科研业务费专项资金资助(JUSRP51733B)
关键词 控制方向未知 非线性时滞系统 自适应 学习控制 Unknown control direction nonlinear time-delay system adaptive learning control
  • 相关文献

参考文献6

二级参考文献68

  • 1孙云平,刘赟,李俊民.一类二阶时变非线性系统的混合自适应重复学习控制[J].西安电子科技大学学报,2006,33(3):495-499. 被引量:13
  • 2Tao G, Kokotovic P V. Adaptive control of plants with un- known dead-zone. IEEE Transactions on Automatic Control, 1994, 39(1): 59-68.
  • 3Pachter M, Miller R B. Manual flight control with saturat- ing actuators. IEEE Control Systems Magzine, 1998, 18(1): 10-20.
  • 4Tao G, Kokotovic P V, Adaptive control of systems with backlash. Automatica, 1993, 29(2): 323-335.
  • 5Tao G, Kokotovic P V, Adaptive control of plants with un- known hysteresis. IEEE Transactions on Automatic Control, 1995, 40(2): 200-212.
  • 6Tustin A. The effects of backlash and of speed-dependent friction on the stability of closed-cycle control systems. Jour- nal of the Institution of Electrical Engineers Part IIA: Automatic Regulators and Servo Mechanisms, 1947, 94(1): 143-151.
  • 7Grundelisu M, Angeli D. Adaptive control of systems with backlash acting on the input. In: Proceedings of the 35th IEEE Conference on Decision and Control. Kobe, Japan: IEEE, 1996, 4689-4694.
  • 8Tao G, Ma X, Ling Y. Optimal and nonlinear decoupling control of systems with sandwiched backlash. Automatica, 2001, 37(2): 165-176.
  • 9Mata-Jimenez M T, Brogliato B, Goswami A. On the con- trol of mechanical systems with dynamic backlash. In: Pro- ceedings of the 36th Conference on Decision and Control. Washington D. C., USA: IEEE, 1997, 1990-1995.
  • 10Gerdes J C, Kumar V. An impact model of mechanical back- lash for control system analysis. In: Proceedings of American Control Conference. Seattle, USA: IEEE, 1995. 3311-3315.

共引文献38

同被引文献50

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部