期刊文献+

基于生物修饰的304不锈钢表面抗菌性能 被引量:2

Antimicrobial Performance of 304 Stainless Steel Surface Using Biological Modification
下载PDF
导出
摘要 为了研究生物修饰对材料表面抗菌性能的影响,利用多巴胺及三种生物多肽修饰304不锈钢的表面,利用傅里叶变换红外光谱仪(FTIR)和接触角测量仪研究修饰后的材料表面性质,选用金黄色葡萄球菌(S.aureus)作为试验菌株研究样本表面抗菌性能,并通过超景深三维显微系统初步研究了样本表面形貌对抗菌性能的影响。结果表明,多巴胺和生物肽修饰后,样本表面的湿润性发生了改变,且都具有抗菌效果,1号多肽抗菌效果最好,多巴胺修饰样本的抗菌效果最差;不同颗粒度砂纸、不同抛磨压力处理的样本表面会影响材料表面性能,600号砂纸抛光的样本经生物修饰后抗菌效果优于2 000号砂纸抛光的样本,这个结论同样适用于开放环境中。 In order to study the effect of biological modification on the antibacterial properties, the surface of 304 stainless steel was modified with dopamine and three kinds of biological peptides. The surface properties of the modified materials were studied by Fourier transform infrared spectroscopy (FTIR) and contact angle measuring instrument. S. aureus was used as the experimental strain to study the antimicrobial properties of the samples, and the effects of sample morphology on the antibacterial properties were also studied by super depth 3D microscope. The results show that the wettability of samples treated by dopamine and peptides are changed, and all of them reveal antibacterial effect, polypeptide 1 has the best antibacterial effect, while the samples treated by dopamine show the worst antibacterial properties. Antibacterial properties of the material are related with polishing pressure and particle size sandpaper. Samples polished by 600# sandpaper show better antibacterial properties than those polished by 2000# sandpaper after biological modification. The obove conclusion is also applicable to open environment.
出处 《中国表面工程》 EI CAS CSCD 北大核心 2017年第3期1-7,共7页 China Surface Engineering
基金 国家自然科学基金(51375355) 湖北省自然科学基金(2015CFA127) 中央高校基本科研业务费(2016-YB-023)~~
关键词 生物膜 抗菌 吸附量 biofilm antibacterial adsorption capacity
  • 相关文献

参考文献1

二级参考文献30

  • 1付玉彬.生物膜对金属材料腐蚀性能影响的研究进展(上)[J].材料开发与应用,2006,21(1):34-39. 被引量:7
  • 2赵宁,卢晓英,张晓艳,刘海云,谭帅霞,徐坚.超疏水表面的研究进展[J].化学进展,2007,19(6):860-871. 被引量:80
  • 3傅献彩,姚天扬,沈文霞.物理化学[M].北京:高等教育出版社.2005.60-74.
  • 4ABARZUA S, JACUBOWSKI S. Biotechnological investiga- tion for the prevention of biofouling: biological and biochemi- cal principles for the prevention of biofouling[-J. Mar Ecol Prog Set, 1995,123 : 301-312.
  • 5CASSE F, SWAIN G W. The development of microfouling on four commercial antifouling coatings under static and dynamic immersionFJ. Int Biodeterior Biodegradation, 2006, 57: 179- 185.
  • 6VLADKOVA T. Surface modification approach to control bio- fouling[J]. Marine and Industrial Biofouling, 2011, 4 (1) 135-163.
  • 7ELISABETH M D, LI Dong-yang, RANDALL T I. A pep tide-stainless steel reaction that yields a new bioorganic-metal state of matter EJ. Biomaterials, 2011,32: 5311-5319.
  • 8IKADA Y, SUZUKI M, TAMADA Y. Polymer surfaces possessing minimal interaction with blood components[-M// Polymers as Biomaterials(Section B). New York: Plenum, 1984.
  • 9ANDERSON C, ATLAR M, CALLOW M, et al. The de- velopment of fouling-release coatings for seagoing vesselsEJ. J Marine Design: B, 2003,4 11-23.
  • 10ZHAO Q, WANG S , MULLER-STEINHAGEN H. Tailor- ed surface free energy of membrane diffusers to minimize mi crobial adhesion[J]. Appl Surf Sci, 2004, 230: 371-378.

共引文献4

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部