摘要
在光声成像中,超声信号通常需要采用接触传感器探测,这使其在很多应用中受到很大的限制,如脑功能成像。为了替代接触探测器实现非接触的光声层析成像(NCPAT),激光干涉技术被用于远程获取超声信号。本文搭建了非接触光声层析成像系统,系统采用波长为532 nm、能量17.5 m J/cm^2的激光作为光声激发源,激光外差干涉仪作为光声信号的远程探测系统,对实际生物组织模型进行了旋转几何的光声信号探测。利用激光外差干涉仪探测到的光声信号,进行反投影算法的图像重建。实验结果表明在具有组织散射特性的模型中,激光外差干涉仪在2.25 MHz带宽(峰值下15 d B强度的信号宽带)下,NCPAT成像系统可以识别500μm直径的黑色微球,并实现了在强散射介质中多层结构的光学对比成像。这将扩展光声和超声在体成像在生物医学领域的应用范围。
In photoacoustic imaging the ultrasonic signals are usually detected by contacting transducers. For some applications, contact with the tissue should be avoided, e.g. in those of brain functional imaging. As alternatives to contacting transducers interferometric techniques can be used to acquire photoacoustic signals remotely. Here, a system for non-contact photoacoustic tomography imaging (NCPAT) has been established. This approach enables NCPAT not to exceed laser exposure safety limits. The stimulated source of NCPAT utilized a laser with center wavelength of 532 nm and output intensity of 17.5 mJ/cm^2, and a laser heterodyne interferometry was used to receive the photoacoustic signals. The NCPAT was used to implement on a rotational imaging geometry for photoacoustic tomography with a real-tissue phantom. The photoacoustic imaging was obtained by applying a reconstruction algorithm to the data acquired for NCPAT. Experiments results showed that the NCPAT system with detection 15 dB bandwidth of 2.25 MHz could resolve spherical optical inclusions with dimension of 500 μm and multi-layered structure with optical contrast in strongly scattering medium. The method could expand the scope of photoacoustic and ultrasonic technology to in-vivo biomedical applications where contact is impractical.
出处
《生物医学工程学杂志》
EI
CAS
CSCD
北大核心
2017年第3期439-444,共6页
Journal of Biomedical Engineering
基金
国家自然科学基金(61227017)
国家杰出青年科学基金(61425006)
关键词
生物医学光学
光声层析成像
非接触
生物组织
biomedical optics
photoacoustic tomography
non-contact
biological tissue