期刊文献+

量化特征关系用于不完备故障诊断的知识获取方法 被引量:1

Knowledge Discovery Method of Incomplete Fault Diagnosis Information via Valued Characteristic Relation
下载PDF
导出
摘要 为了从包含多种未知属性值的不完备故障诊断信息中获取决策规则,提出一种量化特征关系用于不完备故障诊断的知识获取方法。首先,结合不完备故障诊断信息产生的原因,确定未知属性值的类型;然后,利用量化特征关系对不完备故障诊断信息进行分析;最后,利用量化特征关系下属性约简算法获取故障诊断决策规则。结合故障齿轮箱的诊断实例验证了该方法的有效性,结果表明此方法可以从包含三种未知属性值的不完备故障诊断决策表中直接获取准确的故障诊断决策规则。 In order to discover decision rules from incomplete fault diagnosis information containing multiple unknown attribute values, a knowledge discovery method of incomplete fault diagnosis information by using valued characteristic relation is proposed. Firstly, the unknown attribute value types are determined according to the reasons for incomplete information. Secondly, the incomplete fault diagnosis information is analyzed by using the valued characteristic relation. Finally, the decision rules for fault diagnosis are discovered according to the attribute reduction algorithm based on the valued characteristic relation. The effectiveness of the method is demonstrated with the diagnosis case of faulty gearbox. The experimental results show that the present method can directly discover the accurate decision rules from incomplete fault diagnosis information with three categories of unknown attribute values.
作者 于军 赵学增
出处 《机械科学与技术》 CSCD 北大核心 2017年第6期827-833,共7页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(51175102 61673142)资助
关键词 量化特征关系 不完备信息 故障诊断 知识获取 valued characteristic relation incomplete information fault diagnosis knowledge discovery
  • 相关文献

参考文献3

二级参考文献30

  • 1于达仁,胡清华,鲍文.融合粗糙集和模糊聚类的连续数据知识发现[J].中国电机工程学报,2004,24(6):205-210. 被引量:70
  • 2李道国,苗夺谦,张红云.粒度计算的理论、模型与方法[J].复旦学报(自然科学版),2004,43(5):837-841. 被引量:41
  • 3管延勇,薛佩军,王洪凯.不完备信息系统的可信决策规则提取与E-相对约简[J].系统工程理论与实践,2005,25(12):76-82. 被引量:22
  • 4Pawlak Z, Skowron A. Rough sets and boolean reasoning[J ]. Information Sciences, 2007,177( 1 ) :41 -73.
  • 5Zhang L, Zhang B. Fuzzy reasoning model under quotient space structure [ J ]. Information Sciences, 2005,173 (4) : 353 - 364.
  • 6Zadeh L A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic [ J ]. Fuzzy Sets and Systems, 1997,90(2) :111 - 127.
  • 7Yao Y Y, Yao J T. Granular computing as a basis for consistent classification problems [ A]. In: Proceedings of PAKDD'02 Workshop on Foundations of Data Mining [ C ], Taipei, 2002 : 101-106.
  • 8蒙祖强,史忠植.基于信息系统的粒度计算机理研究[J].模式识别与人工智能,2007,20(5):599-605. 被引量:1
  • 9R. Teti,K. Jemielniak,G. O’Donnell,D. Dornfeld.Advanced monitoring of machining operations[J]. CIRP Annals - Manufacturing Technology . 2010 (2)
  • 10Jose Vicente Abellan-Nebot,Fernando Romero Subirón.A review of machining monitoring systems based on artificial intelligence process models[J]. The International Journal of Advanced Manufacturing Technology . 2010 (1-4)

共引文献7

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部