期刊文献+

一种基于Kriging模型的天线高维全局优化算法 被引量:2

A high dimensional global optimization method for antenna design based on Kriging model
下载PDF
导出
摘要 传统的天线优化设计需要对大量的参数组合进行电磁仿真后才能得到最优结果,使得天线高维优化设计效率普遍较低。针对该问题,使用在参数空间均匀分布的少量样本及其仿真结果构建初始Kriging模型,优化循环中每代种群由高适应度个体和高离散性个体组成,依据Kriging模型预测的个体响应和不确定性,对进化后的下一代种群进行筛选,选择最优个体执行电磁仿真并更新Kriging模型。利用此方法优化一个6变量E形天线的工作频点,相比同类优化算法,所需的电磁仿真次数可减少80%左右。 Traditional antenna optimization designs need numerous simulation trials of different parameter combinations to reach the optimum, which leads to low efficiency in solving high dimensional antenna design and optimization problems. To address this issue, we design an initial Kriging model by using a few uniformly distributed sampling points and their simulation data. During the optimization it- erations, the population of each generation is comprised of individuals with high fitness as well as indi- viduals with high diversity. The optimal individual is selected according to its responses and uncertainty predicted by the Kriging model. Electromagnetic simulations are conducted for this individual, and the results are used to update the Kriging model. This algorithm is applied to optimize the resonant frequen- cies of an E-shaped antenna with 6 variables. Compared with other optimization methods, the number of EM simulation is reduced by about 80%.
出处 《计算机工程与科学》 CSCD 北大核心 2017年第6期1087-1091,共5页 Computer Engineering & Science
基金 安徽省高等教育提升计划(TSKJ2014B05)
关键词 天线设计 高维优化 KRIGING 均匀采样 antenna design high dimensional optimization Kriging uniformly sampling
  • 相关文献

参考文献3

二级参考文献36

  • 1袁军,邱扬,刘其中,田锦,谢拥军.基于空间映射及遗传算法的车载天线优化配置[J].电波科学学报,2006,21(1):26-32. 被引量:17
  • 2李明洋,刘敏,杨放.HFSS天线设计[M].北京:电子工业出版社,2011.
  • 3Liu Bo, Aliakbarian H, Ma Zhong-kun, et al.. An efficientmethod for antenna design optimization based onevolutionary computation and machine learning techniques[J].IEEE Transactions on Antennas and Propagation, 2014,62(1): 7-18.
  • 4Bandler J W, Cheng Q S, Dakroury S A, et al. Spacemapping: the state of the art[J]. IEEE Transactions onMicrowave Theory and Techniques, 2004, 52(1): 337—361.
  • 5Koziel S and Madsen K. Space mapping and beyond:knowledge-driven microwave design optimization[C]. 2012IEEE MTT-S International, Microwave Symposium Digest(MTT), Montreal, QC, Canada, 2012: 1-3.
  • 6Shaker G, Bakr M H, Sangary N, et al. Accelerated antennadesign methodology exploiting parameterized Cauchymodels[J]. Progress In Electromagnetics Research B, 2009,18:279-309.
  • 7Chen L L, Liao C, Lin W B, et al. Hybrid-surrogate-model-based efficient global optimization for high-dimensional antenna design[J]. Progress In Electro magneticsResearch, 2012, 124: 85-100.
  • 8Bose T and Gupta N. Design of an aperture-coupledmicrostrip antenna using a hybrid neural network[J]. IETMicrowaves Antennas & Propagation, 2012,6(4): 470-474.
  • 9Quepo N V, Haftka R T, Wei S, et al. Surrogate-basedanalysis and optimization[J]. Progress in Aerospace Sciences,2005,41: 1-28.
  • 10Koziel S and Bandler J W. Accurate modeling of microwavedevices using kriging corrected space mapping surrogates[J].International Journal of Numerical Modelling: ElectronicNetworks Devices and Fields, 2012, 25(2): 1-14.

共引文献7

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部