期刊文献+

舌诊图像点刺和瘀点的识别与提取 被引量:19

Tongue spots and petechiae recognition and extraction in tongue diagnosis images
下载PDF
导出
摘要 计算机舌诊系统中,点刺和瘀血点是重要的舌象。基于斑点检测、支持向量机(SVM)和K-均值聚类算法,提出了对舌诊图像中点刺和瘀点的识别及提取方法。首先利用SimpleBlobDetector斑点检测算法检测斑点,并提取出斑点数量、大小和分布等特征值生成特征向量,再使用SVM进行点刺(瘀点)舌象识别。点刺(瘀点)提取同样基于斑点检测算法,提取斑点颜色特征,使用K-均值聚类将斑点聚类为多个小类簇,定义基于加权颜色空间距离的判别函数,将聚类结果同第一次斑点检测的结果对比,得到正类和负类,最终提取出点刺和瘀点。利用该方法进行实验,识别正确率达到97.4%,提取误检率为6.0%,漏检率为10.1%,表明了本方法的有效性和应用价值。 Tongues spots and petechiae are important tongue patterns in the computer tongue diagno- sis system. We propose a method to recognize and extract spots and petechiae in tongue images based on blob detection, support vector machine (SVM) and k-means clustering. Firstly, we apply the Simple- BlobDetector algorithm to detect blobs in tongue images. Secondly, we obtain the characteristic values of blob number, size and distribution to generate the feature vector. Thirdly, we utilize the SVM classifier to recognize tongues with spots or petechiae. The detection of spots or petechiae also bases on blob detection. Blob detection result is clustered into several groups by using k-means clustering after extrac- ting color features. To extract the spots or petechiae, we define a discriminant function based on weighted color space distance, compare the clustering results with the former blob detection results, and achieve a binary classification of clustering groups. The positive class is the extraction results. Experi- mental results show that the recognition accuracy can reach 97.4%, the false alarm rate is 6.0% and the missing alarm rate is 10.1%. The results also verify the availability and application value of our method.
出处 《计算机工程与科学》 CSCD 北大核心 2017年第6期1126-1132,共7页 Computer Engineering & Science
关键词 舌点刺和瘀点 斑点检测 特征提取 支持向量机(SVM) K-均值聚类 tongue spots and petechiae blob detection feature extraction support vector machine (SVM) K-means clustering
  • 相关文献

参考文献5

二级参考文献25

  • 1沈兰荪,王爱民,卫保国,王永刚,赵忠旭.图像分析技术在舌诊客观化中的应用[J].电子学报,2001,29(z1):1762-1765. 被引量:61
  • 2许家佗,周昌乐,方肇勤,张志枫,王志国,孙炀.舌像颜色特征的计算机分析与识别研究[J].上海中医药大学学报,2004,18(3):43-47. 被引量:51
  • 3孙炀,罗瑜,周昌乐,许家佗,张志枫.一种基于分裂-合并方法的中医舌像区域分割算法及其实现[J].中国图象图形学报(A辑),2003,8(12):1395-1399. 被引量:34
  • 4庄泽澄.中医诊断学[M].北京:科学出版社,1999-05..
  • 5[3]Chuangchien Chiu. A Novel Approach Based on Computerized Image Analysis for Traditional Chinese Medical Diagnosis of the Tongue. Computer Methods and Programs in Biomedicine, 2000,61(2): 77-89
  • 6[1]ZHAO Zhong-xu, WANG Ai-min, SHEN Lan-sun, et al. An automatic tongue analyzer of Chinese medicine based on color image processing[A]. ICEMI'99[ C]. Harbin, China: ICEMI, 1999.830 - 834.
  • 7[3]Aimin WANG, Lan-sun SHEN, Zhong-xu ZHAO. Color tongue image segmentation using fuzzy kohonen networks and genetic algorithm[ A].Proceedings of SPIE[ C]. San Jose, USA: SPIE, 2000.182 - 190.
  • 8[5]C C CHIU. A novel approach based on computerized image analysis for traditional Chinese medical diagnosis of the tongue[J]. Computer Methods and Programs in Biomedicine,2000,61 (2):77 -89.
  • 9[7]Reed T R, DuBuf J M H.A review of recent texture segmentation and feature extraction techniques[J].Image Understanding,1993,57:359- 372.
  • 10[8]Oja E. Subspace Method of Pattern Recognition [ D ]. Lethchworth, U K: Research Studies Press, 1983.

共引文献75

同被引文献311

引证文献19

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部