期刊文献+

基于BP神经网络的循环介质密度控制系统设计 被引量:7

Design of circulating medium density control system based on BP neural network
下载PDF
导出
摘要 以稳定循环介质密度值在所需范围为目标,运用MATLAB软件编程,建立了基于BP神经网络的循环介质密度控制系统。该系统以涡北选煤厂的生产数据为样本集,选择循环介质密度、磁性物含量和介质桶位为输入变量,调节阀开度、分流阀1开度和分流阀2开度为输出变量,经过训练、测试,确定实验数据隐层数为1、隐层节点为9,使误差基本稳定在0.002~0.012之间,符合控制系统的需求,从而为解决重介密度控制问题提供了一条思路。 In order to keep circlulating medium density stabilized within the required range, the BP neu- ral network-based density control system is designed through programming with MATLAB. The system circulating medium density, content of magnetic materials and medium level in tank as input variables, and with opening of regulator valve, opening of diverter valve 1 and opening of diverter valve 2 as output variables. It is determined through training and testing that the numbers of hidden layers and nodes of ex- perimental data are respectively 1 and 9 with an error basically stabilized in a range of 0. 002 ~ 0. 012, well up to the requirement. The development of the control system may serve as a reference for solving the problems in medium density control aspect.
出处 《选煤技术》 CAS 2017年第2期62-66,共5页 Coal Preparation Technology
基金 国家自然基金项目(51174202)
关键词 重介选煤 循环介质 密度控制系统 MATLAB BP神经网络 dense medium coal separation ciculating medium density control system MATLAB BPneural network
  • 相关文献

参考文献7

二级参考文献79

共引文献193

同被引文献58

引证文献7

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部