期刊文献+

具有可分离结构的线性约束凸优化问题的迫近正则收缩算法

A contraction method with proximal regularization for linearly constrained convex optimization problem with separable structures
下载PDF
导出
摘要 对具有可分离结构的线性约束凸优化问题(也就是目标函数是有2个算子和形式的可分离凸优化问题)展开研究,考虑在一定的假设条件下,通过选取合适的迫近正则参数矩阵G,拟利用可实现的迫近正则收缩法求解具有可分离结构的线性约束凸优化问题.将与原问题等价的变分不等式作为理论研究框架,通过将原问题转化为一系列容易求解的子问题,达到降低原问题求解难度的目的,下一个迭代点的获取通过求解子问题生成.最后,提出一种新的迫近正则收缩算法,并且应用变分不等式等相关理论对文中给出的迫近正则收缩算法进行了收敛性分析. In this paper, we study the linearly constrained convex optimization problem with separable structures (i. e. , the convex optimization problem whose objective function is the sum of two opera- tors). By selecting the appropriate proximal regularization parameter G,we can imitate a contraction method with implementable proximal regularization to solve the linearly constrained convex optimiza- tion problem with separable structure, and we take variational inequality as theoretical framework which is equivalent to original problem,and transform the original problem into a series of easy sub- problems to reduce the difficulty in solving original problem. The next iterate point is obtained by solving subproblems. Finally, a new proximal regularization algorithm is proposed and its conver- gence is analyzed by using relevant variational inequality theories.
出处 《辽宁师范大学学报(自然科学版)》 CAS 2017年第2期150-153,共4页 Journal of Liaoning Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11301246)
关键词 凸优化 线性约束 迫近正则收缩算法 变分不等式 convex optimization linear constraint proximal regularization contraction method varia- tional inequality
  • 相关文献

参考文献1

二级参考文献12

  • 1何炳生.凸优化和单调变分不等式的收缩算法[EB/OL].[2013-11-13].http://math.nju.edu.an/hebma/.
  • 2Gabay D, Applications of the method of multipliers to variational inequalities, Augmented Lagrange Methods: Applications to the Solution of Boundary-valued Problems, edited by M. Fortin and R. Glowinski, North Holland, Amsterdam, The Netherlands, 1983: 299-331.
  • 3Glowinski R, Numerical Methods for Nonlinear Variational Problems [M]. New York: Springer- Verlag, 1984.
  • 4Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers [J]. Foun Trends Mach Learn, 2010, 3: 1-122.
  • 5He B S, Yuan X M. On the O(1/n) convergence rate of the alternating direction method [J]. SIAM J. Numerical Analysis, 2012, 50: 700-709.
  • 6He B S, Yuan X M. On non-ergodic convergence rate of Douglas-Rachford alternating directions method of multipliers [J]. Numerische Mathematik.
  • 7Chen C H, He B S, Ye Y Y, et al. The direct extension of ADMM for multi-block convex min- imization problems is not necessarily convergent [J]. to appear in Mathematical Programming, Series A.
  • 8He B S, Tao M, Yuan X M. Alternating direction method with Gaussian back substitution for separable convex programming [J]. SIAM Journal on Optimization, 2012, 22: 313-340.
  • 9He B S, Tao M, Yuan X M. A splitting method for separable convex programming [J]. IMA Journal of Numerical Analysis, 2015~ 31: 394-426.
  • 10Esser E, MSller M, Osher S, et al. A convex model for non-negative matrix factorization and dimensionality reduction on physical space [J]. IEEE Trans. Imag. Process., 2012, 21(7): 3239-3252.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部