摘要
利用微分从属构造了解析函数类H(α,A,B)={f(z)∈H:(1-α)f(z)/z+αf'(z)<(1+Az)/(1+Bz),z∈U},其中0≤α≤1,-1≤B<A≤1,z∈U.利用施瓦兹函数的Fekete-Szeg ?不等式,得到了该函数类上的a_2及a_3-μa_2~2(μ∈C)的精确估计:a_3-μa_2~2≤(A-B)/(1+2α)max {1|,B+(μ(1+2α)(A-B))/((1+α)~2)},并给出了相应的极值函数,其结果推广了已有的结论.
By making differential subordination, a new function of H( α,A ,B)={f(z)∈H:(1-α)f(z)/z+αf'(z)〈(1+Az)/(1+Bz),z∈U},is introduced, among them,0≤α≤1,-1≤B〈A≤1,z∈U.By using Fekete-Szego inequality of Schwarts function, if f(z)∈H(α,A,B),μ∈C,then |a2|≤(A-B)/(1+α) and for all μ∈C εογ following bound is sharp |a3-μa2^2|≤A-B/1+2αmax{1,|B+μ(1+2α)(A-B)/(1+α)^2|}.The extremal function of H(α,A ,B) is given, some existing results are expanded by the conclusion of this article.
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2017年第3期114-116,共3页
Journal of South China Normal University(Natural Science Edition)
基金
安徽省高校自然科学基金重点资助项目(KJ2015A372)