期刊文献+

跨临界CO_2引射制冷系统控制性能 被引量:3

Control Performance of Transcritical CO_2 Ejector Refrigeration System
下载PDF
导出
摘要 本文建立了两种控制器(单通道最优控制器(SCOC)和多变量线性二次高斯控制器(LQG))以改善跨临界CO_2引射制冷系统的运行效率。首先建立了SCOC,通过在线调节喷嘴喉部面积,搜索系统最优的气冷器压力;其次针对SCOC作用下制冷量不可控的缺点,设计了LQG以实现系统制冷量可调。将两种控制器分别应用于实验系统中,结果表明:SCOC能够驱使系统不断接近系统的最优气冷器压力,给定工况下获得最大制热系数COPh为3.15,但导致系统制冷量的不可控。在LQG的作用下,气冷器压力、系统制冷量得到独立控制,显示了很好的参数跟随性,然而LQG无法保证系统的稳态运行效率。研究指出两种控制器各有优缺点,若实现满足系统负荷需求的同时保持系统最高的运行效率,需要设计结合两种算法特点的新型控制器。 Two controllers (single channel optimal controller (SCOC) and muhivariable linear quadratic Gaussian controller (LQG)) are built to improve the performance of a transcritical CO2 refrigeration cycle. The SCOC is first proposed to search the optimal gas cooler pressure online by adjusting the nozzle throat area. Considering the uncontrollable cooling capacity by the SCOC, the second controller LQG is designed to achieve the controllable cooling capacity, Experimental results show that the optimal gas cooler pressure is actually achieved by the SCOC with a maximal COPh of about 3.15 under the given operating conditions. However, with the SCOC, the cooling capacity is changed passively and uncontrollably. Moreover, experiments with LQG indicate that the cooling capacity and gas cooler pressure are accurately tracked independently. However, LQG cannot ensure the maximal operating performance when the system becomes steady. This work points out that the two controllers have their own advantages and disadvantages. More work needs to be done to combine the two algorithms into one. This will achieve maximal efficiency under the desired cooling capacity.
出处 《制冷学报》 CAS CSCD 北大核心 2017年第3期1-6,共6页 Journal of Refrigeration
基金 国家自然科学基金(51676148)资助项目~~
关键词 制冷 引射器 CO2 优化控制 多变量控制器 refrigeration ejector CO2 optimal control muhivariable controller
  • 相关文献

参考文献6

二级参考文献64

  • 1邓建强,姜培学,石润富,李建明.跨临界CO_2汽车空调微通道气体冷却器的设计开发[J].制冷学报,2005,26(4):51-55. 被引量:13
  • 2B Zhang, X Peng, Z He, et al. Development of a double acting free piston expander for power recovery in transcritical CO2 cycle [J]. Applied Thermal Engineering, 2007, 27 (8-9): 1629-1636.
  • 3G M Chen, X X Xu, S Liu, et al. An experimental and theoretical study of a CO2 ejector [J]. Int. J. Refrigeration, 2010, 33 (5) : 915-921.
  • 4M Nakagawa, A R Marasigan, T Matsukawa, et al. Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO2 refrigeration cycle with and without heat exchanger [J]. International Journal of Refrigeration, 2011, 34 (7) : 1577-1586.
  • 5S Elbel, P Hmjak. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation [J]. Int. J. Refrigeration, 2008, 31 (3) :411-422.
  • 6P Chaiwongsa, S Wongwises. Experimental study on R-134a refrigeration system using a two-phase ejector as an expansion device[J].Applied Thermal Engineering, 2008, 28 (5) : 467-477.
  • 7P Chaiwongsa, S Wongwises. Effect of throat diameters of the ejector on the performance of the refrigeration cycle using a two-phase ejector as an expansion device[J]. Int. J. Refrigeration, 2007, 30 (4) : 601-608.
  • 8J S Lee, M SKim, M SKim. Experimental study on the improvement of CO2 air conditioning system performance using an ejector[J] . Int. J. Refrigeration, 2011, 34 (7): 1614-1625.
  • 9M Nakagawa, A R Marasigan, T Matsukawa, et al. Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO2 refrigeration cycle with and without heat exchanger [J]. Int.J. Refrigeration, 2011,34 (7) :1604-1613.
  • 10Lorentzen G. Trans-critical vapour compression cycle de- vice: Switzerland, WO 90/07683 [ P]. 1990-07-12.

共引文献38

同被引文献31

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部