期刊文献+

虚拟现实技术在电力系统培训中的研究及实践价值 被引量:6

Research on Virtual Reality Technology in Electric Power System Training and its Practical Value
下载PDF
导出
摘要 基于虚拟现实技术将电力系统培训的深度和广度在特定空间的低成本再现成为可能。文章利用变电站三维虚拟场景建模技术对变电站三维场景进行建模,实现变电站可视化,通过动态交互技术提高员工在三维虚拟环境中的临场感和可操作程度,强化员工对变电站复杂环境了解和突发事件处理能力,提升电力培训效果。 The virtual reality technology makes it possible for the low-cost reproduction of the power system training in depth and breadth. In this paper, the three-dimensional virtual scene modeling technology of the substation is used to model the three-dimensional scene of the substation, to realize the visualization of the substation. It can improve the telepresence and the operability of the staff in the 3D virtual environment through the dynamic interaction technology, strengthen the staff's understanding of the complex environment and the unexpected events processing capability, also enhance the effectiveness of power training.
出处 《电力信息与通信技术》 2017年第5期27-32,共6页 Electric Power Information and Communication Technology
关键词 电力系统培训 三维场景构建 可视化技术 动态交互 electric power system training 3D scene construction visualization technology dynamic interaction
  • 相关文献

参考文献9

二级参考文献84

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[ J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 2003, 25(5) :564-575.
  • 3Nummiaro K, Koller-Meier E, Van-Gool L. An adaptive color-based particle filter [ J ]. Image and Vision Computing, 2003, 21 ( 1 ) :99-110.
  • 4Birchfleld S, Elliptical head tracking using intensity gradients and color histograms [ A ]. In : Proceedings of the International Conference on Computer Vision and Pattern Recognition [ C ], Santa Barbara, CA, USA, 1998: 232-237.
  • 5Conaire C, Connor N. Thermo-visual feature fusion for object tracking using multiple spatiogram trackers [ A ]. In: Proceedings of Conference on Machine Vision and Applications[ C ] , New York, NY, USA, 2007:483-494.
  • 6Perez P, Vermaak J, Blake A. Data fusion for visual tracking with particles [ J ]. Proceedings of the IEEE,2004, 92 ( 3 ) :495-513.
  • 7Brasnett P, Mihayhova L, Bull D. Sequential monte carlo tracking by fusing multiple cues in video sequences[ J]. Image Vision Computing, 2007, 25(8) :1217-1227.
  • 8Serby D, Koller-Meier E, Van-Gool L. Probabilistic object tracking using multiple features [ A ]. In: Proceedings of 17th International Conference on Pattern Recognition [ C ], Cambridge, UK, 2004 :184-187.
  • 9Pitt M,Shephard N. Filtering via simulation: auxiliary particle filters [ J ]. Journal of the American Statistical Association, 1999, 94(446) : 590-599.
  • 10Birchfield S, Sriram R. Spatiograms versus histograms for region- based tracking [ A ] . In: Proceedings of IEEE Computer Society Conference on Computer Vision and Patten Recognition [ C ], San Diego, CA, USA, 2005 : 1158-1163

共引文献155

同被引文献43

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部