期刊文献+

关于土工格栅合理网孔尺寸的研究 被引量:15

Study on the reasonable size of geo-grid meshes
下载PDF
导出
摘要 土工格栅与土之间的界面参数是表征土工格栅加筋作用的重要参数,对土工格栅加筋土结构的稳定和变形破坏特征有显著影响。目前各类规范或标准关于格栅-土界面参数的取值均未考虑土工格栅特有的网孔结构尺寸的影响,致使实际工程中土工格栅的选用存在较大的人为性。针对这一问题,首先通过室内试验和数值方法的对比分析,建立了土工格栅界面特性研究的数值模型,并验证了数值方法研究土工格栅界面特性的可行性。以土工格栅界面特性研究的数值模型为基础,进一步开展了不同网孔尺寸条件下土工格栅界面特性的研究。研究结果表明,土工格栅网孔结构的网孔尺寸对格栅-土的界面特性有显著影响。通过分析不同网孔尺寸对界面特性影响的规律发现,为了更直观地揭示土工格栅的加筋作用,应该将格栅-土界面的摩擦作用从界面综合的摩擦作用中剥离出来。同时,土工格栅的合理网孔尺寸应保证格栅-土之间的有效接触面积占整个界面面积的1/3左右。 The interracial properties between geo-grid and soil are important for representing the reinforcement of the geo-grid and are of great influences on the stability and the deformation-failure characteristics of gee-grid structures. At present, various specifications and standards fail to consider the influences of mesh sizes on the parameters selection of geo-grid soil interface, leading to artificial selection of geo-gdd in practical engineering. In this paper, the numerical model studies the characters of geo-grid interface through comparative analysis between indoor experiments and numerical methods. The results show that the mesh size of geo-gird has dramatic influences on the characteristics of geo-grid interface. Through analyzing the principles of the influences of different mesh sizes on the interface characters, it shows that the friction effects of geo-gfid interface should be excluded .from the comprehensive friction on the interface to explore the effects of reinforcement more directly. Meanwhile, the reasonable mesh size of geo-grid should ensure that the effective contact between geo-grid and soil should be one-third of the whole interface.
出处 《岩土力学》 EI CAS CSCD 北大核心 2017年第6期1583-1588,共6页 Rock and Soil Mechanics
基金 重庆市自然科学基金资助项目(No.cstc2013jcyjys0002) 重庆市教委科学技术研究项目(No.KJ1754490)~~
关键词 土工格栅 界面参数 加筋土结构 合理网孔尺寸 数值方法 geo-grid interface character reinforced structure reasonable mesh size numerical method
  • 相关文献

参考文献2

二级参考文献21

  • 1王祺,韩道均,陈仕周.土工格栅加筋挡墙的设计方法及应用[J].重庆交通学院学报,2006,25(3):65-68. 被引量:6
  • 2包承纲.土工合成材料界面特性的研究和试验验证[J].岩石力学与工程学报,2006,25(9):1735-1744. 被引量:95
  • 3《土工合成材料工程应用手册》编写委员会.土工合成材料工程应用手册(第二版)[M].北京:建筑工业出版社,2000.118-164.
  • 4Shields D H, Scott J D, Bauer G E, Deschenes J H, et al.Bearing capacity of foundations near slopes[J]. Canadian Geotechnical Journal, 1974, (2):715-720.
  • 5Meyerhoff G G. The ultimate bearing capacity of foundations on slopes[A]. Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering Vol.1[C]. London: Saunders College Publishing, 1957. 384-386.
  • 6Adams M T, Collin J G, Member. Large model spread footing load tests on geosynthetic reinforced soil foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering. 1997, 123(1): 66-73.
  • 7Selvadurai A P S, Gnanendran C T. An experimental study of a footing located on a sloped fill: influence of a soil reinforcement layer[J]. Canadian Geotechnical Journal, 1989, 26(3): 467-473.
  • 8Huang C C, Tatsuoka F, Sato Y. Failure mechanisms of reinforced sand slopes loaded with a footing[J]. Soils and Foundations. 1994, 34: 27-40.
  • 9Lee K M, Manjunath V R. Experimental and numerical studies of geosynthetic-reinforced sand slopes loaded with a footing[J]. Canadian Geotechnical Journal, 2000,37(4): 828-842.
  • 10Yoo C. Laboratory investigation of bearing capacity behavior of strip footing on geogrid-reinforced sand slope[J]. Geotextiles and Geomembranes, 2001, 19(5):279-298.

共引文献36

同被引文献180

引证文献15

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部