期刊文献+

倒装芯片下填充流动二维化数值分析方法的应用 被引量:1

Application of Two-Dimensional Numerical Analysis Method of Underfill Flow in Flip-Chip
下载PDF
导出
摘要 下填充流动是确保倒装芯片可靠性的重要封装工艺,其流场和流动过程具有明显的二维特征,通过降维得到的二维化数值分析新方法能高效地模拟下填充流动过程。针对一种焊球非均匀、非满布的典型倒装芯片,用该数值分析方法模拟了单边下填充流动的过程,并用实验对模拟结果进行了检验。实验采用了可视化的下填充流动装置,倒装芯片试样采用硅-玻璃键合(SOG)方法制作。将数值模拟结果与实验结果比较发现,无论是流动速度还是流动前沿的形态,两者均呈现出较高的吻合度。这表明:针对下填充流动的二维化数值分析方法兼具高效性和准确性,具有较高的应用价值。 Underfill flow is an important packaging process to ensure the reliability of flip-chip. The flow field and flow process have obvious two-dimensional characteristics. The new two-dimensional nu- merical analysis method from dimension reduction can efficiently simulate the underfilling process. A nu- merical simulation of a single edge underfill flow was presented for a typical flip-chip with non-uniform and non-overall arranged solder bumps. The simulation results were verified by experiments. A visualized underfill flow device was used in the experiment. The flip-chip samples were fabricated by silicon on glass (SOG) method. Numerical simulation results were compared with experiment results. The compa- ring results show that the flow velocity is highly indentical with the flow front shape. This shows that the two-dimensional numerical analysis method for the underfilling flow has high efficiency, accuracy and high practical value.
出处 《半导体技术》 CSCD 北大核心 2017年第6期463-468,共6页 Semiconductor Technology
基金 上海市自然科学基金资助项目(15ZR1409300)
关键词 倒装芯片 下填充 数值分析 二维化 可视化 flip-chip underfill numerical analysis two-dimensional visualization
  • 相关文献

参考文献2

二级参考文献19

  • 1黄伟峰,刘秋生,李勇.存在残余液体的微管道中的表面张力驱动流动[J].清华大学学报(自然科学版),2006,46(2):280-283. 被引量:5
  • 2WONG C P, WONG M M. Recent advances in plastic packaging of flip-chip and multichip modules (MCM) of microelectronics [ Jl. IEEE Transactions on Components and Packaging Technology, 1999, 22 (1) : 21 -25.
  • 3HAN S, WANG K K. Analysis of the flow of encapsulant during underfill encapsulation of flip-chips [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 1997, 20 (4): 424-433.
  • 4YOUNG W B. Effect on filling time for a non-newtonian flow during the underfilling of a flip chip [ J ]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1 (7): 1048-1053.
  • 5YOUNG W B, YANG W L. Underfill viscous flow between parallel plates and solder bumps [ J ]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2002, 25 (4): 695-700.
  • 6YOUNG W B, YANG W I, The effect of solder bump pitch on the underfill flow [ J ]. IEEE Transaction on Advanced Packaging, 2002, 25 (4): 537-542.
  • 7YOUNG W B, YANG W L. Underfill of flip-chip: the effect of contact angle and solder bump arrangement [ J ]. IEEE Transaction on Advanced Packaging, 2006, 29 (3) : 647 -653.
  • 8WAN J W, ZHANG W J, BERGSTROM D J. Influence of transient flow and solder bump resistance on underfill process [ J ]. Microelectronics Journal, 2005, 36 (8): 687-693.
  • 9WAN J W, ZHANG W J, BERGSTROM D J. An analytical model for predicting the underfill flow characteristics in flip-chip encapsulation [ J ]. IEEE Transaction on Advanced Packaging, 2005, 28 ( 3 ) : 481 -487.
  • 10WAN J W, ZHANG W J, BERGSTROM D J. A theoretical analysis of the concept of critical clearance towards a design methodology for the flip-chip package [J]. ASME Journal of Electronics Packaging, 2007, 129 (4): 473 -478.

共引文献13

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部