期刊文献+

非线性方程组的非交替Newton-PHSS迭代法 被引量:7

Non-alternating Newton-PHSS iteration method for systems of nonlinear equations
下载PDF
导出
摘要 大型稀疏非Hermite正定Jacobi矩阵对应的非线性方程组的迭代求解历来受到重视.结合不精确Newton法和非交替PHSS迭代法,提出了迭代求解非线性方程组的NewtonNPHSS方法,给出了迭代法的局部收敛定理,并演算了数值例子,阐明了Newton-NPHSS是有效的迭代法. Much attention has been paid on the iteration solution for large scale and sparse systems of nonlinear equations whose Jacobian matrix is non-Hermitian positive definite during these years. Our goal in this paper is to combine the inexact Newton method with non-alternating preconditioned Hermitian and skew- Hermitian splitting (PHSS) iteration method, and to present a non-alternating Newton-PHSS (Newton-NPHSS) iteration method for solving systems of nonlinear equations. Local convergence theorem of the method is given. Numerical examples are carried out to verify the effectiveness of Newton-NPHSS method.
作者 伍渝江 陈亮
出处 《应用数学与计算数学学报》 2017年第2期153-162,共10页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11471150)
关键词 非线性方程组 不精确NEWTON法 Newton-HSS法 局部收敛 systems of nonlinear equations inexact Newton method Newton-HSS (Hermitian and skew-Hermitian splitting) method local convergence
  • 相关文献

参考文献2

二级参考文献5

共引文献13

同被引文献47

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部