期刊文献+

基于ARMA和遗传算法优化的BP神经网络电动机断条故障诊断 被引量:2

Fault Diagnosis of BP Neural Network Based on ARMA and Genetic Algorithm Optimization
下载PDF
导出
摘要 为判断鼠笼式三相异步电动机转子断条故障情况,提出了一种利用定子电流信号,基于ARMA和遗传算法优化的BP神经网络的诊断方法。首先,使用改进的ARMA算法对电动机的定子电流波形进行拟合,将自回归系数模型系数提取出来,作为表征电动机故障的特征向量,并分为训练集和测试集。然后利用遗传算法优化BP神经网络的初始阈值和权值,以避免BP神经网络陷入局部极值点的问题。再用训练集对BP神经网络进行训练,用训练好的神经网络对测试集进行判断。实验结果显示,ARMA模型可较好地对三相异步电动机定子电流波形进行拟合,BP神经网络可较为准确地判断特征向量表征的故障情况,此方法具有较好的诊断结果。 In order to recognize the broken rotor bar fault of squirrel cage asynchronous motors, a method of diagnosis was proposed using stator current signal, based on ARMA model and BP neural network optimize by genetic algorithm. Firstly, fit stator current signal waveform with ARMA algorithm, and use parameters of auto- regressive model in ARMA as eigenvectors representing motor fault, and divide these eigenvectors into training set and testing set. Optimize original threshold and weight in BP neural network to avoid the problem that the network was trapped into local extremum. Train the neural network with training set and do recognition with the testing set. The experiment shows that, ARMA model has the ability to fit stator current signal waveform well, and the BP neural network has the ability to accurately recognize faults represented in eigenvectors. This method has a high diagnosis accuracy.
作者 边宁 许允之
出处 《煤矿机电》 2017年第3期23-26,30,共5页 Colliery Mechanical & Electrical Technology
关键词 鼠笼式三相异步电动机 转子断条 自回归滑动平均(ARMA)模型 BP神经网络 故障诊断 squirrel cage three-phase asynchronous motor rotor broken bar auto-regressive moving average (ARMA) model BP neural network fault diagnosis
  • 相关文献

参考文献4

二级参考文献39

  • 1崔博文,任章.基于傅里叶变换和神经网络的逆变器故障检测与诊断[J].电工技术学报,2006,21(7):37-43. 被引量:53
  • 2王雪松,程玉虎,易建强,王炜强.基于Elman网络的非线性系统增强式学习控制[J].中国矿业大学学报,2006,35(5):653-657. 被引量:8
  • 3王勇,田斌,向新,易克初.一种应用于限制零极点位置复数陷波器的迭代算法[J].信号处理,2007,23(1):6-9. 被引量:3
  • 4HUANG Jin,YANG Jia-qiang,NIU Fa-liang.Rotor broken bar fault diagnosis for induction motors based on double PQ transformation[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(8):1320-1329. 被引量:1
  • 5Housner G W, Bergman L A, Caughey T K, et al. Structural control: past, present and future [J]. Journal of Engineering Mechanics, 1997, 123(9): 897-971.
  • 6Bement M T, Farrar C R. Issues for the application of statistical models in damage detection[C]// SPIE Vol. 4062, Proceedings of IMAC-18: A Conference on Structural Dynamics. San Antonio, Texas, 2000: 1392-1398.
  • 7Brockwell P J, Davis R A. Introduction to time series and forecasting (second edition) [M]. New York: Springer-Verlag, 2002.
  • 8杨叔子,吴雅,等.时问序列的工程应用[M].武汉:华中理工大学出版社,1991.
  • 9Sohn H, Farrar C R, Hunter N F, et al. Structural health monitoring using statistical pattern recognition techniques [J]. Journal of Dynamic Systems Measurement and Control,ASME, 2001, 123(4): 706-711.
  • 10Nair K K, Kiremidjian A S, Law K H. Time series based damage detection algorithm with application to the ASCE benchmark structure[C]//Augusti G, Schueller G I, Ciampoli M, eds. Proceedings ICOSSAR 2005, Safety and Reliability of Engineering Systems and Structures. Rotterdam: Millpress, 2005: 761-768.

共引文献24

同被引文献27

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部