期刊文献+

FCC晶体中孔洞的聚合行为研究

Research on Void Coalescence Behavior in FCC Single Crystal
下载PDF
导出
摘要 通过编写率相关用户子程序UMAT,实现了有限元计算中晶体塑性本构关系描述。采用含两个球形孔洞单晶模型,模拟分析了FCC晶体中不同晶体取向下孔洞的聚合行为。计算结果表明孔洞的聚合与晶体取向密切相关,在变形过程中,随着晶体取向不同,孔洞形状、长大方向和孔洞间韧带宽度也不同,就Cube、Goss、Copper和Brass四种初始取向而言,Cube取向中的孔洞的聚合效应最强烈最易聚合。单晶体中两孔洞间韧带区变形充分且孔洞沿韧带方向显著生长会加快孔洞的聚合速度。 A rate-dependent user subroutine UMAT was written in Fortran language, which could be used for describing the crystal plasticity constitutive relation in the finite element calculation. A single crystal model including two 3D spherical voids was established to study the aggregation behavior of voids with different crystal orientations in FCC crystal. The computed results of different crystallographic orientations were compared, which shows that significant shape, growth direction and ligament are different with different crystal orientations in the modification process. The coalescence effect of cube orientation voids is found to be the strongest and easiest to polymerization by comparing the four initial crystallographic orientations (cube orientation, goss orientation, copper orientation, brass orientation). And the main growth direction of two voids in single crystal is consistent with the ligament direction, and the easier deformation ligament zone will accelerate the rate of coalescence of voids.
出处 《太原科技大学学报》 2016年第3期212-217,共6页 Journal of Taiyuan University of Science and Technology
基金 山西省科技攻关(20130321010-04) 太原科技大学博士科研基金(20122057)
关键词 晶体塑性有限元 孔洞 晶体取向 聚合 crystal plasticity finite element, void, crystal orientation, coalescence
  • 相关文献

参考文献3

二级参考文献23

  • 1TANG Jian-guo.Simulation of Inhomogeneous Slip Deformation in FCC Metals With Textured Polycrystal Plasticity Finite Element[D].Changsha:Central Sourth University,2006.
  • 2Pardoen T,Dumont D,Brechet Y,Deschamps A.Grain boundary versus transgranular ductile failure[J].J Mech Phys Solids,51:637-665.
  • 3Nemat-Nasser S,Okinaka T,Nesterenko V,Liu M.Dynamic void collapse in crystals:computational modelling and experiments[J].Philos Mag A,1998,A78:1151-1174.
  • 4Solanki K,Horstemeyer M F,Baskes M I,Fang H.Multiscale study of dynamic void collapse in single crystals[J].Mech Mater,2005,37:317-330.
  • 5Gologanu M,Leblond J B,Devaux J.Approximate models for ductile metals containing non spherical voids-case of axisymmetric prolate ellipsoidal cavities[J].J Mech Phys Solids,1993,41:1723-1754.
  • 6Pardoen T,Dumont D,Deschamps A,Brechet Y.Grain boundary versus transgranular ductile failure[J].J Mech Phys Solids,2003,51:637-665.
  • 7Gologanu M,Leblond J B,Devaux J.Approximate models for ductile metals containing non-spherical voids-case of axisymmetric oblate ellipsoidal cavities[J].J Eng Mater Technol,1994,116:290-297.
  • 8Pardoen T,Hutchinson J W.An extended model for void growth and coalescence[J].J Mech Phys Solids,2000,48:2467-2512.
  • 9Shu J Y.Scale dependent deformation of porous single crystals[J].International Journal of Plasticity,1998,14:1085-1107.
  • 10Orsini V C,Zikry M A.Void growth and interaction in crystalline materials[J].Int J Plasticity,2001,17:1393-1417.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部