期刊文献+

基于改进欧式距离的硬件木马检测 被引量:7

Hardware Trojan Detection Based on Improved Euclidean Distance
下载PDF
导出
摘要 传统欧式距离判别方法用于硬件木马检测时,存在判别准确率较低的问题。为此,分析芯片运行时的侧信道功耗信息,根据木马模块触发产生额外功耗的特征,提出一种指数变换改进方案。加入可调参数,以增大硬件木马的可识别度。实验结果表明,与传统欧氏距离判别法相比,参数可调的欧氏距离改进方案可使判别性能提升29%,且木马检测准确率高达98%。 The accuracy of the hardware Trojan detection method based on the traditional Euclidean distance discrimination is too low to meet the demand. For this reason, the side-channel power consumption information is collected and analized in this paper, and an exponential transformation optimization scheme is given based on the extra power consumption caused by the hardware Trojan module. This adjustable parameter is able to increase the recognition of the hardware Trojan. Experimental results show that compared with the traditional Euclidean distance discrimination method, the modified Euclidean distance scheme with adjustable parameters improves the discrimination performance by 29% and the Trojan detection accuracy reaches 98% .
出处 《计算机工程》 CAS CSCD 北大核心 2017年第6期92-96,共5页 Computer Engineering
基金 中央高校基本科研业务费专项资金(2014GCYY04)
关键词 欧式距离判别 硬件木马检测 功耗信息 可调参数 标准芯片 Euclidean distance discrimination hardware Trojan detection power consumption information adjustableparameter standard chip
  • 相关文献

参考文献7

二级参考文献76

  • 1苏静,赵毅强,何家骥,刘沈丰.旁路信号主成分分析的欧式距离硬件木马检测[J].微电子学与计算机,2015,32(1):1-4. 被引量:13
  • 2MANGARD S, OSWALD E, POPP T..能量分析攻击[M].冯登国,周永彬,刘继业,等译.北京:科学出版社,2010:50-55.
  • 3Chakraborty R S, Narasimhan S, Bhunia S, et al. Hardware Trojan: Threats and Emerging Solutions[C]//Proc. of IEEE International High Level Design Validation and Test Workshop San Francisco, USA: IEEE Press, 2009.
  • 4Narasimhan S, Chakraborty R S, Bhunia S. Hardware IP Protection During Evaluation Using Embedded Sequential Trojan[J]. IEEE Design & Test of Computers, 2012, 29(3): 70-79.
  • 5Salmani H, Tehranipoor M, Plusquellic J. A Novel Technique for Improving Hardware Trojan Detection and Reducing Trojan Activation Time[J]. IEEE Transactions on Very Large Scale Integration Systems, 2012, 20(1): 112-125.
  • 6Tehranipoor M, Koushanfar F. A Survey of Hardware Trojan Taxonomy and Detection[J]. IEEE Design & Test of Comouters, 2010, 27(1): 10-25.
  • 7Agrawal D, Baktir S, Karakoyunlu D. Trojan Detection Using IC Fingerprinting[C]//Proc. of IEEE Symposium on Security and Privacy. Berkeley, USA: IEEE Press, 2007.
  • 8Rad R, Plusquellic J, Tehranipoor M. A Sensitivity Analysis of Power Signal Methods for Detecting Hardware Trojans Under Real Process and Environmental Conditions[J]. IEEE Transactions on Very Large Scale Integration Systems, 2010, 18(12): 1735-1744.
  • 9Rad R, Plusquellic J, Tehranipoor M. Sensitivity Analysis to Hardware Trojans Using Power Supply Transient Signals[C]//Proc. of IEEE International Workshop on Hardware-oriented Security and Trust. Los Angeles, USA: IEEE Press, 2008.
  • 10Koushanfar F, Mirhoseini A. A Unified Framework for Multi- modal Submodular Integrated Circuits Trojan Detection[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(1): 162-174.

共引文献39

同被引文献83

引证文献7

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部