期刊文献+

机载雷达超低空多径目标稳健STAP方法 被引量:3

Robust STAP method for supper-low-attitude target detection with airborne radar
下载PDF
导出
摘要 超低空目标与环境之间存在耦合多径效应,产生"镜像"虚假目标,严重恶化协方差矩阵估计和运动目标检测性能。针对这一问题,该文提出基于时域优化的多点联合幅相约束的稳健空时自适应处理(space-time adaptive processing,STAP)方法。基于超低空目标及其"镜像"目标多普勒扩展特性的分析,提出了目标及临近空时二维域多点联合幅相约束的STAP方法,并基于保形约束推导了时域响应的解析解,实现了STAP二维响应的主瓣保形,克服了目标多径效应造成的检测性能损失。仿真实验验证了该文方法的有效性。 When a moving target flies at a very low attitude, referred to as supper-low-attitude target, it re-sults in target detection performance loss or target tracking error. This is due to the secondary interaction be-tween the moving and environment clutter , which causes an image of the moving target under the ground/sea. To deal with this problem, a robust space-time adaptive processing (STAP) method based on the optimized joint magnitude and phase constraints in the temporal domain is proposed. The Doppler spread characteristics caused by the supper-low-attitude target and its false image counterpart are analysed. With joint magnitude and phase constraints imposed on and around the target, the mainlobe is well maintained and the performance loss due to Doppler spread is avoided. Simulation examples demonstrate that the robustness and detection performance is significantly improved with the proposed method.
作者 冯阳 廖桂生 许京伟 FENG Yang LIAO Guisheng XU Jing wei(National Lab of Radar Signal Processing , Xidian UniversUy,Xi’an 710071,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2017年第7期1464-1470,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61231017)资助课题
关键词 机载雷达 超低空目标 稳健空时自适应处理 联合幅相约束 多普勒扩展 airborne radar supper-low-attitude targets robust space-time adaptive processing (STAP) joint magnitude and phase constraint Doppler spread
  • 相关文献

参考文献1

二级参考文献16

  • 1Herbert G M. Clutter modeling for space-time adaptive process- ing in airborne radar[J]. IET Radar, Sonar and Navigation, 2010, 4(2): 178-186.
  • 2Zhu S Q, Liao G S, Qu Y, et al. Performance improvement for monostatic clutter mitigation using space-time-range three-di- mensional adaptive processing[J]. Digital Signal Processing, 2011, 21(2): 248-261.
  • 3Zhu X M, Li J, Stoica P. Knowledge-aided space-time adaptive processing[J]. IEEE Trans. on Aerospace and Electronic Sys- tems, 2011, 47(2): 1325-1336.
  • 4Ries P, Neyt X, Lapierre F D, et al. Fundamentals of spatial and Doppler frequencies in radar STAP[J]. Trans. on Aerospace and Electronic Systems, 2008, 44(3) : 1118 - 1134.
  • 5Lapierre F D, Ries P, Verly J G. Foundation for mitigating range dependence in radar space-time adaptive processing[J].I ET Radar , Sonar and Navigation, 2009, 3(1): 18-29.
  • 6Ries P, Lapierre F D, Verly J G. Geometry-induced range-depend- ence compensation for bistatic STAP with conformal arrays [J]. IEEE Trans. on Aerospace and Electronic Systems, 2011, 47 (1) : 275 - 294.
  • 7Melvin W L, Davis M E. Adaptive cancellation method for ge- ometry-induced nonstationary bistatic clutter environments[J].IEEE Trans. on Aerospace and Electronic Systems, 2007, 43 (2) : 651 - 672.
  • 8Jaffer A G, Ho P T, Himed B. Adaptive compensation for con- formal array STAP by configuration parameter estimation[C] // Proc. of the IEEE Conference on Radar, 2006: 731 - 736.
  • 9Guo C, Chen J, Sun Y, et al. High forward-looking squint im- age processing for air-to-air missile-borne SAR[C] // Proc. of the Chinese Institute of Electronics International Conference of on Radar, 2006 : 1 - 4.
  • 10Yi Y S, Zhang L R, Liu X, et al. Study on imaging algorithm for missile-borne side-looking SAR[C]// Proc. of the IEEE 1st Asian and Pacific Conference on Synthetic Aperture Radar, 2007:413-417.

共引文献8

同被引文献22

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部