期刊文献+

基于二进制粒子群算法的OFDM稀疏信道导频优化 被引量:1

Pilot design based on binary particle swarm optimization in the OFDM sparse channel
下载PDF
导出
摘要 在正交频分复用(orthogonal frequency division multiplexing,OFDM)稀疏信道中,合理的导频设计可以提高信道估计的性能,以测量矩阵的互相关最小化作为目标,提出一种基于二进制粒子群算法的导频优化方案,引入混沌初始化机制来保证初始粒子均匀地分散在解空间里,通过粒子变异机制来保证种群的快速收敛。根据实验和仿真结果可以看出,与随机搜索导频优化算法、逐位置导频优化算法以及最小二乘法相比,该算法能够有效节省导频的开销,提高频谱利用率,具有更好的信道估计性能。 The reasonable pilot design can improve the performance of the channel estimation in the OFDM sparse channel. With the objective to minimize the cross correlation of the measurement matrix, this paper proposed a pilot optimization al-gorithm based on the binary particle swarm optimization algorithm. In addition, the chaos initialization is to ensure that the initial particles are evenly dispersed in the solution space. The particle mutation mechanism is to ensure the rapid conver-gence of the population. Simulation results show that compared with the random pilot design algorithm, the bitwise pilot de-sign algorithm and the least squares algorithm, the proposed algorithm can effectively save the pilot overhead, improve the spectrum efficiency and provide a better channel estimation performance.
作者 刘远航 刘晓彤 彭帅 万晋京 LIU Yuanhang LIU Xiaotong PENG Shuai WAN Jinjing(Chongqing Key Lab of Mobile Communications Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065 ,P. R. Chin)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2017年第3期335-340,共6页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 长江学者和创新团队发展计划(IRT1299) 重庆市科委重点实验室专项经费(cstc2013yykfA40010)~~
关键词 正交频分复用(OFDM) 压缩感知 导频优化 二进制粒子群算法 orthogonal frequency division multiplexing (OFDM) compressive sensing pilot design binaiy particle swarm optimization algorithms
  • 相关文献

参考文献8

二级参考文献101

  • 1TONG Lang,SADLER B M,DONG Min.Pilot-assisted wireless transmissions[J].IEEE Signal Processing Magzine,2004,2(6):12-25.
  • 2VAN DE BEEK J J,EDFORS O.On channel estimation in OFDM systems[C]//Proc of IEEE VTC 1995.Piscataway:IEEE,1995,2:815-819.
  • 3WU C J,LIN D W.Sparse channel estimation for OFDM transmission based on representative subspace fitting[C]//Proc of IEEE 61st Veh Technol Conf.Piscataway:IEEE,2005,1:495-499.
  • 4PAREDES J L,ARCE G R,WANG Zhongmin.Ultra-Wideband compressed sensing:channel estimation[J].IEEE Journal of Selected Topics in Signal Processing,2007,1(3):383-395.
  • 5TAUBOCK G,HLAWATSCH F.A compressed sensing technique for ofdm channel estimation in mobile environments:exploiting channel sparsity for reducing pilots[C]//Proceedings of ICASSP'2008.Piscataway:IEEE,2008:2885-2888.
  • 6DONOHO D L.Compreesed sensing[J].IEEE Trans on Inf Theory,2006,52(4):1289-1306.
  • 7BARANIUK R G.Compressive sensing[J].IEEE signal Processing Magazine,2007,24(4):118-120,124.
  • 8MALLAT S,ZHANG Z.Mathcing pursuit with time-frequency dictionaries[J].IEEE Tram on Signal Processing,1993,41(12):3393-3415.
  • 9TROPP J A,GILBERTA C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans on lnformation Theory,2007,53(12):4655-4666.
  • 10COFFER S F,RAO B D.Sparse channel estimation via matching pursuit with application to equalization[J].IEEE Trans on Communications.2002,50(3):374-377.

共引文献96

同被引文献2

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部