摘要
【目的】分析信息类、导航类与事务类查询随时间的网络动态性特征,以期为搜索引擎性能优化提供相关依据。【方法】利用相关评测指标分别从查询动态﹑文档内容动态和信息需求动态三个角度出发,分析不同意图类别查询随时间变化所呈现的特征;针对不同意图类别查询,分析在不同查询流行度特征中,其文档内容以及信息需求的变化情况。【结果】在查询流行度分布方面,信息类查询通常包含波峰,事务类查询更可能包含多个波峰且具有周期性,导航类查询通常保持平滑趋势;信息类查询随网页内容与信息需求变化幅度均比其他两类查询的要大。【局限】观察时间段只有29天;未对不包含波峰与包含多个波峰的查询流行度分布图中波峰进行归类与自动识别。【结论】对于信息类查询来说,搜索引擎尽可能地对其查询结果进行多样化展示;对于导航类查询来说,搜索引擎需要保证与之相关权威网页在查询结果中的靠前性;对于与用户交互行为相关的事务类查询,应长时间保持相关网页排序不变;对于一些与娱乐相关事务类查询,在网页排序中需考虑网页的新颖性。
[Objective] This paper aims to improve the performance of search engines optimization through analyzing dynamic informational, navigational and transactional online queries. [Methods] First, the author analyzed user intentions with queries, Web documents and the information needs. Second, for each category of query intention, this paper investigated the changing of Web documents and information needs for different trending queries. [Results] The distribution of popular informational, transactional and navigational queries were different. The informational queries were more dependent on Web documents and needs than the other two types of queries. [Limitations] The data for this study was collected in 29 days. More research is needed to automatically identify and aggregate the popular queries. [Conclusions] Search engines need to list diversified results for informational queries. They need to keep the relevant pages on the first page for navigational queries, maintain the original ranking of relevant pages for the user behavior-related queries, and improve the novelty of results for the entertainment-related queries.
出处
《数据分析与知识发现》
CSSCI
CSCD
2017年第4期9-19,共11页
Data Analysis and Knowledge Discovery
基金
国家社科基金青年项目"融合用户个性化与实时性意图的查询推荐模型研究"(项目编号:15CTQ019)
西南大学博士启动基金"查询意图自动分类与分析研究"(项目编号:SWU114093)的研究成果之一
关键词
信息类查询
事务类查询
导航类查询
查询动态
信息需求动态
文档内容动态
Informational Query Transactional Query Navigational Query Query DynamicInformation Need Dynamic Document Content Dynamic