期刊文献+

人与人传染的有媒体影响因子的禽流感模型

Media impact on the avian influenza model with person-to-person transmission
下载PDF
导出
摘要 建立人与人之间相互传染的有媒体影响因子的SI-SIR禽流感模型,并研究其动力学性态,得到判断疾病传播与否的阈值R_a和R_0.利用Lyapunov函数、Dulac函数以及LaSalle不变原理等证明了当R_a<1且R_0<1时,无病平衡点E_0~*是全局渐近稳定的;当R_a<1且R_0>1时,边界平衡点E_1~*是全局渐近稳定的;当R_a>1时,系统的正平衡点E_2~*是全局渐近稳定的. The model of SI-SIR avian influenza with person-to-person transmission is established,the dynamic behavior of the model is studied,and two thresholds of determining the transmission are obtained.By using the Lyapunov function,Dulac function and LaSalle invariance principle,it shows that when Ra 〈1 and R0〈l,the disease free equilibrium is globally asymptotically stable;When R a 〈1 and R0 〉 1,the boundary equilibrium point El is globally asymptotically stable;When R a 〉1,the positive equilibrium point E;of the system is asymptotically stable.
作者 刘艳 胡新利
出处 《纺织高校基础科学学报》 CAS 2017年第1期23-28,34,共7页 Basic Sciences Journal of Textile Universities
基金 陕西省教育厅自然科学专项基金资助项目(15JK1295)
关键词 禽流感 SI-SIR模型 基本再生数 全局渐近稳定 avian influenza SI-SIR model reproductive number global stability
  • 相关文献

参考文献12

二级参考文献94

  • 1陈军杰.一类具有常数迁入且总人口在变化的SIRI传染病模型的稳定性[J].生物数学学报,2004,19(3):310-316. 被引量:8
  • 2李建全,王峰,马知恩.一类带有隔离的传染病模型的全局分析[J].工程数学学报,2005,22(1):20-24. 被引量:26
  • 3Iwami S, Takeuchi Y, Korobeinikov A, Liu X. Prevention of avian influenza epidemic: What policy should we choose[J]. Journal of Theoretical biology, 2008, (252): 732-741.
  • 4Iwami S, Takeuchi Y, Liu X. Avian-human influenza epidemic model[J]. Mathematical Biosciences, 2007, (207): 1-25.
  • 5Rao D M, Chernyakhovsky A, Rao V. Modelling and analysis global epidemiology of avian in- fluenza[J]. Environmental Modelling and Software, 2009, (24): 124-134.
  • 6Wang W, Backward bifurcation of an epidemic model treatment[J]. Mathematical Biosciences, 2006, (201): 58-71.
  • 7Zhang X, Liu X. Backward bifurcation of an epidemic model with saturated treatment function[J]. Journal of Mathematical Analysis and Applications, 2008, (348): 433-443.
  • 8Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Mathematical Biosciences, 1978, (42): 43-61.
  • 9Wang K, Wang W, Liu X. Viral infection model with periodic lytic immune response[J]. Chaos Solitons and Fractals, 2006, (28): 90-99.
  • 10Wendi Wang.Backward Bifurcation of an epidemic model with treatment[J].Mathematical Biosciences.2006(201):58-71.

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部