期刊文献+

二氧化碳在RP-3航空燃油中溶解度实验测定 被引量:2

Experimental measurement of solubility of carbon dioxide in RP-3 jet fuel
原文传递
导出
摘要 以国产实际使用并含有添加剂的RP-3号燃油为研究对象,测量了燃油在不同温度下的密度,搭建了压力降落法实验装置,测定了5~40℃温度及3组不同压力范围下,CO_2在RP-3号燃油中的溶解度,采用ASTM D2780-92标准中提供的相对密度法对溶解度进行了计算并与实验值进行了比较.结果显示:计算值与实验值有很大偏差,且随着温度上升及压力下降,该偏差增加,最大相对偏差可达到106%.根据实验值,对ASTM D2780-92中的阿斯特瓦尔德系数计算公式进行了线性修正,修正后计算的溶解度和实验值误差在10%之内.该研究结果可为绿色惰化的设计提供参考依据. The actually used RP-3 jet fuel containing additives was employed as the stud- y object to measure its density and the solubility of CO2 from 5℃ to 40 ℃ under three pres- sure ranges via a experiment apparatus based on the pressure reduction method. The experi- mental solubility was compared with the theoretical solubility calculated by a relative density method provided in the standard of ASTM D2780-92. The result reveals that there exists a large deviation between experimental solubility and the calculated solubility. The deviation rises with the increase of the temperature or the decrease of the pressure, and the maximum deviation is over 106%. Hence, the formula to calculate the Ostwald coefficient depicted in ASTM D2780-92 is linearly corrected via the experimental data and the deviation is within 10% after this correction. The study results can provide a reference for the design of the green on-board inert gas generation system.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2017年第4期949-954,共6页 Journal of Aerospace Power
基金 航空科学基金(20132852040) 南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20150107) 江苏省普通高校研究生科研创新计划(KYLX15_0213) 中央高校基本科研业务费专项资金
关键词 溶解度 实验测量 压力降落法 二氧化碳 航空燃油 solubility experimental measurement pressure decltion methodcarbon dioxide jet fuel
  • 相关文献

参考文献3

二级参考文献39

  • 1韩布兴,闰海科,胡日恒.CO_2、N_2在克拉玛依九区稠油中的溶解度及气体饱和稠油的粘度、密度[J].油田化学,1993,10(3):264-267. 被引量:12
  • 2柯杰,韩布兴,阎海科,柯以侃.气体在克拉玛依九区稠油中的溶解度关联与计算[J].石油学报,1994,15(3):91-95. 被引量:9
  • 3肖华军,袁修干.机载分子筛制氧技术发展的现状与动向[J].航空科学技术,1997(1):26-28. 被引量:21
  • 4[2]William M.C.Developing a fuel-tank inerting system[J].Aircraft Survivability,Published by the Joint Aircraft Survivability Program Office,2005,20-23.
  • 5[3]Thomas L.R.,Delbert B.B,Daniel F.L.,Conrad M.R.Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study,Part I:Aircraft System Requirements[J].NASA/CR-2001-210903,2001,(5).
  • 6[4]Thomas L.R.,Delbert B.B,Daniel F.L.,Conrad M.R.Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study,Part II:Gas Separation Technology-State of the Art[J].NASA/CR-2001-210950,2001,(5).
  • 7[5]Robert C.M.,Martin L.L..Fuel tank explosion protection for large aircraft[J].Aircraft Survivability,Published by the Joint Aircraft Survivability Program Office,2005,16-17.
  • 8[6]Robertg C..The evolution of on-board inert gas generation systems (OBIGGS)[J].SAFE Journal,1990,(20):45-50.
  • 9[7]A.F.Grenich,F.F.Tolle,G.S.Glenn,W.J.Yagle.Design of on-board inert gas generation systems for military aircraft[J].San Diego,California,1984,(84):2518.
  • 10[8]Russ H..F-22 OBIGGS Monitor Zirconia Oxygen Sensor Technology-A Design and Logistical Benefit Analysis[J].SAFE Association 41st Annual Symposium Proceedings,2003.

共引文献79

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部