期刊文献+

抛物线喷管型面参数对流动分离影响的数值模拟 被引量:4

Numerical simulation of effect of parabolic nozzle contour parameters on flow separation
原文传递
导出
摘要 为了研究抛物线喷管型面的3个参数——初始膨胀圆弧半径、入口角和出口角的变化对喷管流动分离过程的影响规律,模拟了不同参数组合下的抛物线喷管流场参数,获得了喷管流动位置、分离模态随集气室压强增加的变化过程.结果表明:这3个参数能够影响发动机起动过程中喷管流场的发展过程.在一定范围内分离模态转换喷管压比(NPR)与初始膨胀圆弧半径呈正相关;通过合理设定入口角和出口角,可以推迟和缩短受限激波分离过程,为解决彭冠侧向载荷问题提供了可能的方向. To investigate how the parabolic nozzle flow separation process is affected by three contour parameters, namely initial expansion curve radius, inlet angle and exit angle, the flow field parameters under different contour parameter combinations were numerically simulated, the changing processes of the nozzle flow separation position and separation mode with the increases of gas chamber pressure were obtained. The flow separation mode varia- tion process with chamber pressure was gained. Results show that these three parameters can influence the development of nozzle flow field during engine starting, the flow separation mode transition nozzle pressure ratio (NPR) keeps a positive relationship with the initial ex- pansion curve radius within a certain range. Restricted shock separation can be put off and shortened by suitable design of inlet angle and exit angle. The conclusion provides a possible way to solve the side load problem.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2017年第4期955-960,共6页 Journal of Aerospace Power
关键词 喷管 参数型面 流动分离 分离模态 侧向载荷 nozzle~ contour parameter flow separation separation mode~ side load
  • 相关文献

参考文献1

二级参考文献15

  • 1Frey M, Hagemann G. Status of flow separation pre-diction in rocket nozzles [ C ]// 34th AIAA/ASME /SAE /ASEE Joint Propulsion Conference & Exhibit, Cieve-land, Oh, USA ,July 13-15,1998.
  • 2Kurt B Smalley, Andrew M Brown and Joseph Ruf. Flow separation side-loads excitation of rocket nozzle FEM [ C ]// 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con. , Honolulu, Hawaii, USA. A- pril 23-26,2007.
  • 3Emanuele Martelli, Francesco Nasuti, Marcello Onofri. Nu- merical calculation of FSS/RSS transition in highly overex- panded rocket nozzle flows [ J ]. Shock Waves, 2010,20: 139-146.
  • 4Vincent Lijo, Heuy Dong Kim,Toshiaki Setoguchi, et al. Nu- merical simulation of transient flows in a rocket propulsion nozzle [ J ]. International Journal of Heat and Fluid Flow, 2010,31 : 409-417.
  • 5Jan 0stlund. Flow processes in rocket engine nozzles with focus on flow separation and side-loads [ R ]. TRITA-MEK Technical Report, 2002 : 9.
  • 6Pekkari L O. Aeroelastie analysis of side load in supersonic nozzles with separated flow [ C ]//30th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference June 27-29,1994 / Indi- anapolis,IN. AIAA 94-3377.
  • 7Dr Andrew M Brown,Joseph Ruf, Darren Reed,et al. Char- acterization of side load phenomena using measurement of fluid/structure interaction [ R ]. AIAA 2002-3999.
  • 8Lefrancois E. Numerical validation of a stability model for a flexible over-expanded rocket nozzle [ J ]- Int. J. Numer. Meth. Fluids. 2005,49 : 349-369.
  • 9Zhang S J , Fuchiwaki T. Aeroelastic coupling and side Ixmds in rocket nozzles[ C]//38th Fluid Dynamics Confer- ence and Exhibit 23-26 June 2008, Seattle, Washington, AIAA 2008-4064.
  • 10Luciano Garelli. Fluid-structure interaction study of the start-up of a rocket engine nozzle [ J ]. Computers & Flu- ids,2010,39 : 1208-1218.

共引文献6

同被引文献26

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部