期刊文献+

Modeling on monitoring the growth and rupture assessment of saccular aneurysms 被引量:2

Modeling on monitoring the growth and rupture assessment of saccular aneurysms
下载PDF
导出
摘要 The unpredictable rupture of saccular aneurysms especially of the intracerebral aneurysm is a knotty problem that always results in high mortality. Traditional diagnosis of medical images, which gives the aneurysm size and compares with a speculated critical size from clinical statistics, was demonstrated inadequate to forecasting rupture. Here, we propose a new detecting strategy that uses a dielectric elastomer (DE) capacitance sensor to monitor the growth of saccular aneurysms and deliver both the wall stress and geometric parameters, Based on the elastic growth theory together with the finite deformation analyses, the correlation between the real-time output capacitance of the DE sensor and the wall stress and/or geometry of an aneurysm is derived. Compared to clinic statistics and biomechanics simulations, the wall stress and geometric size may be used as combined indicators to assess the rupture risk of a saccular aneurysm, Numerical results show that an output relative capacitance of 30 indicates a high risk of rupture, Finally, the sensitivity and resolution of the DE sensor are proved adequately high for monitoring the growth state and evaluating the rupture risk of a saccular aneurysm. The unpredictable rupture of saccular aneurysms especially of the intracerebral aneurysm is a knotty problem that always results in high mortality. Traditional diagnosis of medical images, which gives the aneurysm size and compares with a speculated critical size from clinical statistics, was demonstrated inadequate to forecasting rupture. Here, we propose a new detecting strategy that uses a dielectric elastomer (DE) capacitance sensor to monitor the growth of saccular aneurysms and deliver both the wall stress and geometric parameters, Based on the elastic growth theory together with the finite deformation analyses, the correlation between the real-time output capacitance of the DE sensor and the wall stress and/or geometry of an aneurysm is derived. Compared to clinic statistics and biomechanics simulations, the wall stress and geometric size may be used as combined indicators to assess the rupture risk of a saccular aneurysm, Numerical results show that an output relative capacitance of 30 indicates a high risk of rupture, Finally, the sensitivity and resolution of the DE sensor are proved adequately high for monitoring the growth state and evaluating the rupture risk of a saccular aneurysm.
出处 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第2期117-120,共4页 力学快报(英文版)
基金 supported by the National Natural Science Foundation of China(11322216,11621062,and 11321202) the Zhejiang Provincial Natural Science Foundation(LR13A020001)
关键词 Saccular aneurysms Rupture risk Dielectric elastomer capacitance sensor Elastic growth theory Finite deformation Saccular aneurysms Rupture risk Dielectric elastomer capacitance sensor Elastic growth theory Finite deformation
  • 相关文献

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部