期刊文献+

基于改进BP神经网络的非均衡数据分类算法 被引量:7

Unbalanced Data Classification Algorithm Based on Improved BP Neural Network
下载PDF
导出
摘要 传统的分类算法大都默认所有类别的分类代价一致,导致样本数据非均衡时产生分类性能急剧下降的问题.对于非均衡数据分类问题,结合神经网络与降噪自编码器,提出一种改进的神经网络实现非均衡数据分类算法,在神经网络模型输入层与隐层之间加入一层特征受损层,致使部分冗余特征值丢失,降低数据集的不平衡度,训练模型得到最优参数后进行特征分类得到结果.选取UCI标准数据集的3组非均衡数据集进行实验,结果表明采用该算法对小数据集的分类精度有明显改善,但是数据集较大时,分类效果低于某些分类器.该算法的整体分类效果要优于其他分类器. Most of the traditional classifications algorithms have the same classification cost of all categories, which results in a sharp decline in classification performance when the sample data are unbalanced. As to the problem of unbalanced data classification, we combine neural network with denoising auto-encoder and put forward a kind of improved neural network to realize unbalanced data classification algorithm. The algorithm adds a layer called feature damaged layer between input layer and hidden layer. Thus some redundant feature values are lost, and the unbalance degree of data set is reduced. And the results can be obtained after training model obtains optimal parameters and deals with the classification based on feature. It selects three sets of UCI standard unbalanced data sets for experiment. The results show that the accuracy of the algorithm for small data set classification is improved obviously, but when the data set is larger, the classification effect is lower than some classifier. And the overall classification performance of the proposed algorithm is better than other classifiers.
出处 《计算机系统应用》 2017年第6期153-156,共4页 Computer Systems & Applications
关键词 非均衡数据 神经网络 降噪自编码器 分类 unbalanced data neural network denoising auto-encoder classification
  • 相关文献

参考文献7

二级参考文献77

  • 1张琦,吴斌,王柏.非平衡数据训练方法概述[J].计算机科学,2005,32(10):181-186. 被引量:10
  • 2GONG Maoguo,DU Haifeng,JIAO Licheng.Optimal approximation of linear systems by artificial immune response[J].Science in China(Series F),2006,49(1):63-79. 被引量:21
  • 3韩慧,王路,温明,王文渊.不均衡数据集学习中基于初分类的过抽样算法[J].计算机应用,2006,26(8):1894-1897. 被引量:11
  • 4陆琼瑜,童学锋.BP算法改进的研究[J].计算机工程与设计,2007,28(3):648-650. 被引量:35
  • 5WANG B X, JAPKOWICZ N. Boosting support vector machines for imbalanced data Sets [ J]. Knowledge and Information Systems, 2010, 25(1): 1-20.
  • 6KANG P, CHO S. EUS SVMs: ensemble of under-sampled SVMs for data imbalance problems [ C]// ICONIP 2006: International Conference on Neural Information Processing, LNCS 4232. Berlin: Springer-Verlag, 2006:837-846.
  • 7KOTSIANTIS S, KANELLOPOULOS D, PINTELAS K. Handling imbalaneed datasets: a review [ J]. GESTS International Transactions on Computer Science and Engineering, 2006, 30(1) :25 -36.
  • 8GAO J, FAN W, HAN J, et al. A general framework for mining concept-drifting data streams with skewed distributions [ C]// SDM2007: Proceedings of 2007 SIAM International Conference on Data Mining. Minneapolis: [ s. n. ], 2007:3 - 14.
  • 9GAO J, DING B, FAN W, et al. Classifying data streams with skewed class distributions and concept drifts [ J]. IEEE Internet Computing, 2008, 12(6): 37-49.
  • 10IMAM T, TING K M, KAMRUZZAMAN J. z-SVM: an SVM for improved classification of imbalanced data [ C]// AI 2006: Ad- vances in Artificial Intelligence, LNCS 4304. Berlin: Springer-Verlag, 2006:264-273.

共引文献80

同被引文献54

引证文献7

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部