摘要
Two types of Mo containing metal-organic frameworks,denoted as Mo@COMOC-4 and PMA@MIL-101(Cr),were synthesized respectively by a post-synthetic modification and a ship-in-bottle approach.The catalytic performance of both compounds in the epoxidation of propylene using cumene hydroperoxide(CHP) as oxidant was compared with MoO3@SiO2.A higher conversion(46.2%) and efficiency(87.4%) of CHP was observed for Mo@COMOC-4,whereas the heteropoly acids supported MIL-101 resulted in the decomposition of CHP due to its strong acidic character.Regenerability tests demonstrated that Mo@COMOC-4 could be reused for multiple runs without significant loss in both activity and stability.
Two types of Mo containing metal-organic frameworks,denoted as Mo@COMOC-4 and PMA@MIL-101(Cr),were synthesized respectively by a post-synthetic modification and a ship-in-bottle approach.The catalytic performance of both compounds in the epoxidation of propylene using cumene hydroperoxide(CHP) as oxidant was compared with MoO3@SiO2.A higher conversion(46.2%) and efficiency(87.4%) of CHP was observed for Mo@COMOC-4,whereas the heteropoly acids supported MIL-101 resulted in the decomposition of CHP due to its strong acidic character.Regenerability tests demonstrated that Mo@COMOC-4 could be reused for multiple runs without significant loss in both activity and stability.
基金
financially supported by National Natural Science Foundation of China(No.21403025)
Scientific Research Foundation for Returned Scholars,Ministry of Education of China
the State Key Laboratory of Fine Chemicals(No.KF1405)
support from the Ghent University BOF-post-doctoral Grant 01P06813T