期刊文献+

基于非局部随机游走和运动补偿的2D转3D优化方法

Optimization for 2D-to-3D conversion based on nonlocal random walk and motion compensation
原文传递
导出
摘要 2D转3D技术可以从2D资源中获取深度信息,以满足3D显示对3D内容的需求。针对2D转3D深度估计中的深度优化问题,提出一种基于非局部随机游走(NRW)和运动补偿的深度优化算法。本文方法在采用NRW和移动双边滤波(SBF)获得关键帧和非关键帧深度图的基础上,为了锐化非关键帧深度序列对象边界,结合纹理信息利用NRW算法优化深度图,同时又考虑相邻帧间的时域信息,采用运动补偿的方法对非关键帧深度序列进行优化,获得高质量的深度视频序列。实验结果表明,本文方法可以得到对象边界更加准确的深度视频估计结果。 Depth information can be obtained from 2-dimensional (2D) resources through 2D-to-3D con- version technology,in order to meet the demand for 3D content. In this paper,a novel approach based on nonlocal random walk (NRW) and motion compensation is proposed to solve the problem of depth map optimization in depth estimation. The depth maps of key frames and non-key frames are obtained on the basis of NRW and shifted bilateral filtering (SBF), respectively. In order to sharpen the depth bounda- ries, taking texture information into account, NRW is utilized to optimize the depth sequence. Considering that the temporal information of adjacent frames, motion compensation is introduced to further improve the quality of depth maps of non-key frames. Experimental results show that,in contrast to the method directly processed by SBF, our method can produce higher quality depth sequence with accurate object boundaries.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2017年第6期644-649,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61271324 61520106002 61471262 91320201) 国家国际合作计划(2010DFA12780) 天津市自然科学基金(12JCYBJC10400)资助项目
关键词 2D转3D 深度估计 深度优化 2D-to-3D conversion depth estimation depth optimization
  • 相关文献

参考文献2

二级参考文献35

  • 1Fehn C. Depth-image-based rendering ( DIBR), compres- sion and transmission for a new approach on 3D-TV[A]. Proc. of SPIE[C]. 2004,5291 :93-101.
  • 2Liu Y W,Huang Q M,Ma S W,et al. Joint video depth rate allocation for 3D video coding based on view syn- thesis distortion modet [J]. Signal Processing: Image Communication, 2009,24( 8 ) : 666-681.
  • 3Ma S W, Wang S Q, Gao W. Low complexity adaptive view synthesis optimization in HEVC based 3D video coding [J]. IEEE Transactions on Multimedia, 20 11, 16 (1) :266-271.
  • 4Yuan H, Kwong S, Liu J. et al. A novel distortion model and Lagrangian multiplier for depth maps coding[J] IEEE Transactions on Circuits and Systems for Video Technol- ogy,2014,24(3) :413-451.
  • 5Fang LoCheung N M.Tian D. An analytical model for syn- thesis distortion estimation in 3D video[J]. IEEE Transac- tions on Image Processing,2014,23( l ) : 185-199.
  • 6Tech G.Schwarz H,Muller K .et al, 3D video coding using the synthesized view distortion change[A], Proc. of Pic-ture Coding Symposium[C]. 2012,25-28.
  • 7de Silva D V S X,Fernando W A C,Worrall S T,et al. Just noticeable difference in depth model for stereoscopic 3D displaysA. Proc. of IEEE International Conference Multimedia and Expo[C]. 2010,1219-1224.
  • 8Nguyen H T,Do M N. Error analysis for image-based ren- dering with depth information[J]. IEEE Transactions on Image Processing, 2009,18(4) : 703-716.
  • 9Zhao Y, Zhu C,Chen Z Z, et al. Depth no-synthesis-err model for view synthesis in 3D video[J]. IEEE Transac- tions on Image Processing,2011,20(8) :2221-2228.
  • 10Cheung G, Kubota A,Ortega A. Sparse representation of depth maps for efficient transform coding[R]. Nagoya, Japan: Picture Coding Symposium, 2010,298-301.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部