期刊文献+

面向主梁优化的改进人工蜂群算法 被引量:12

Optimization of the Main Beam Based on Improved Artificial Bee Colony Algorithm
原文传递
导出
摘要 针对算法收敛速度慢、搜索盲目性大等不足,引入了自适应步长、路径交换邻域搜索和差分进化算法的变异策略,使得改进后的算法收敛性加强,收敛速度提高,改善了随机性,提高了寻优精度;算法到后期搜索平坦化,引入遗传算法中的交叉与变异行为,增加种群多样性,提高了算法的全局稳定性。将改进的算法运用到桥式起重机主梁中进行优化并运用ANSYS进行力学分析,实例检验了算法的可行性;最后通过对比优化前后的结果,得出优化后的主梁质量减重效果明显且符合设计要求,对实际工程结构的设计有指导意义。 On the basis of the basic ABCA for its slow convergence, large Searching blindness and other issues, the introduction of a self-adaptive step length, path exchanging neighborhood search makes the convergence of the improved algorithms to strengthen and improve the convergence speed,the randomness and the optimization accuracy. For a planarization of late algorithm searching, the introduction of crossover and mutation of genetic algorithm, increase the diversity of population, to enhance the global stability of the algorithm. The improved algorithm applied to the main beam of bridge crane and optimized using ANSYS mechanical analysis. An example to verify the feasibility of the algorithm. Finally through the contrast before and after the optimization results that the optimized beam quality and the effect of weight loss significantly and in accordance with design requirements, have directive significance to the actual engineering structure design.
出处 《机械设计与研究》 CSCD 北大核心 2017年第3期99-104,共6页 Machine Design And Research
关键词 人工蜂群算法(ABCA) 自适应步长 路径交换邻域搜索 差分进化算法 交叉与变异 主梁 ABCA self-adaptive step path exchanging neighborhood search differential evolution crossover and mutation main girder
  • 相关文献

参考文献4

二级参考文献32

  • 1陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 2吴春明,陈治,姜明.蚁群算法中系统初始化及系统参数的研究[J].电子学报,2006,34(8):1530-1533. 被引量:47
  • 3马溪骏,潘若愚,杨善林.基于信息素递减的蚁群算法[J].系统仿真学报,2006,18(11):3297-3300. 被引量:18
  • 4王彩华 宋连天.模糊方法学[M].北京:中国建筑工业出版社,1988.204-272.
  • 5Basturk B, Karaboga D. An artificial bee colony (ABC) algorithm for numeric function optimization[C]//Proceedings of IEEE Swarm Intelligence Symposium Indianapolis. Indianapdis, USA" [s. n. ], 2006:651 - 656.
  • 6Fathian M, Amiri B, Maroosi A. Application of honey bee mating optimization algorithm on clustering[J]. Applied Mathematics and Computation, 2007 (10) : 1016 - 1025.
  • 7Von Frisch K. The dance language and orientation of bees[M]. Boston, Massachusetts, USA.. The Belknap Press of Harvard University Press, 1967.
  • 8Abbass H A. Arriage in honey-bee optimization (MBO) : a haplometrosis polygynous swarming approach [C]//Proceedings of The Congress on Evolutionary Computation (CEC2001). Seoul, Korea: [s. n. ], 2001:207 - 214.
  • 9Gutin G, Punnen A. The traveling salesman problem and its variations[M]. Dordrecht, Holland: Kluwer Academic Publishers, 2002.
  • 10Afshar A, Bozog H O, Marino M A. Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation [J]. Journal of the Franklin Institute, 2007,344: 452 - 462.

共引文献101

同被引文献66

引证文献12

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部