期刊文献+

对强心苷类临床应用相关问题的思考 被引量:3

Several problems of cardiac glycosides in clinical application
下载PDF
导出
摘要 强心苷类药物的主要药理机制是抑制心肌细胞膜Na^+-K^+-ATP酶,干扰膜内外相应离子浓度,影响细胞生理功能,致Na^+-Ca^(2+)代偿性交换增多,使心肌收缩性增强并表现相应临床效应。但膜电位的减低使心肌细胞兴奋性增高及传导性下降,为心肌电紊乱提供了可能,也为其临床应用带来诸多争议。特别是当电解质紊乱和心律失常时,对该药的选择和使用存在较多疑点,而对该类药物药理机制和心肌电生理的正确认识和理解是临床安全合理用药的保证。 The main pharmacological mechanism of cardiac glycosides is to inhibit Na+-k+-ATPase, interfere the ion concentrations inside and outside of myocardial cell membranes, affect myocardial cell function, increase compensatory exchange of Na+-Ca2+ and boost the myocardial contractility, thus showing the corresponding clinical effect. However, it increases the excitability of myocardial cells and reduces the conductivity, which easily induces myocardial electrical disorders and brings many problems in clinical application. There are many queries about the choice and use of cardiac glycosides, especially in the patients with electrolyte disorder and arrhythmia. Correct understanding of the pharmacological mechanism and myocardial electrophysiology can be an insurance of rational and safe medication clinically.
出处 《医学争鸣》 北大核心 2017年第2期53-56,共4页 Negative
关键词 强心苷类 心力衰竭 收缩性 心律失常 cardiac glycosides heart failure systolic arrhythmia
  • 相关文献

参考文献5

二级参考文献89

  • 1Wijffels MC, Kirchhof C J, Dorland R, et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats[J]. Circulation, 1995, 92(7): 1954-1968.
  • 2Xu Y, Sharma D, Li G, et al. Atrial remodeling: new pathophysiological mechanism of atrial fibrillation [J]. Med Hypotheses, 2013, 80(1):53-56.
  • 3Sossalla S, Kallmeyer B, Wagner S, et al. Altered Na^+ currents in atrial fibrillation effects of ranolazine on arrhythmias and contractility in human atrial myocardium[J]. J Am Coll Cardiol, 2010, 55(21):2330-2342.
  • 4Olesen MS, Bentzen BH, Nielsen JB, et al. Mutations in the potassium channel subunit KCNE1 are associated with early-onset familial atrial fibrillation[J]. BMC Med Genet, 2012, 13(1):24.
  • 5Caballero R, de la Fuente MG, G6mez R, et al. In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both[J]. J Am Coil Cardiol, 2010, 55(21):2346-2354.
  • 6Rao F, Deng CY, Wu SL, et al. Mechanism of macrophage migration inhibitory factor-induced decrease of T-type Ca^2+ channel current in atrium-derived cells[J]. Exp Physiol, 2013, 98(1):172-182.
  • 7Heijman J, Voigt N, Nattel S, et al. Calcium handling and atrial fibrillation[J]. Wien Med Wochenschr, 2012, 162(13- 14):287-291.
  • 8Voigt N, Li N, Wang Q, et al. Enhanced sarcoplasmic reticulum Ca^2+ leak and increased Na^+-Ca^2+ exchanger function underlie delayed after depolarizations in patients with chronic atrial fibrillation[J]. Circulation, 2012, 125(17):2059-2070.
  • 9Oh S, Kim KB, Ahn H, et al. Remodeling of ion channel expression in patients with chronic atrial fibrillation and mitral valvular heart disease[J]. Korean J Intern Med, 2010, 25(4):377-385.
  • 10Lai LP, Su M J, Lin JL, et al. Changes in the mRNA levels of delayed rectifier potassium channels in human atrial fibrillation[J]. Cardiology, 1999, 92(4):248-255.

共引文献22

同被引文献80

引证文献3

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部