期刊文献+

基于协同过滤的美食推荐算法 被引量:14

Food recommendation algorithm based on collaborative filtering
下载PDF
导出
摘要 为了解决传统的基于用户的协同过滤算法中的数据稀疏性问题,提高推荐的准确率,对推荐算法进行了改进并将改进后的算法应用在美食推荐领域。利用均值中心化方法对实验数据进行处理,减少因个人评分习惯差异造成的推荐误差。通过使用改进的空值填补法降低评分矩阵的稀疏性,在计算相似度时引入了遗忘函数和用户间的信任度,进一步提高了推荐系统的准确性。实验表明,提出的改进算法比传统算法有更高的准确率,并得出了在推荐过程中考虑用户和项目外的其他因素以及针对不同的数据信息采用不同的算法,都有利于提高推荐准确率的重要结论。 In view of the problem of data sparseness in the traditional user-based collaborative filtering algorithm, to improve the recommended accuracy, this paper put forward an improved algorithm and used this algorithm to the field of food recommendation. Firstly, in order to reduce the recommended error caused by different personal rating habits, this paper used the mean centralized method to dispose the score data. Secondly, it used the improved null values fill method to reduce the sparse of the rank matrix. Finally, when calculating the similarity between users, this paper considered the factors of the forgotten function and trust relationship between users, in order to improve the accuracy of recommendation system. The experiment shows that the proposed algorithm can get higher accuracy than the traditional algorithm, and it is concluded that in the process of recommended, considering about other factors expect users and items as well as using different algorithms for different data information are beneficial to improve the accuracy of recommendation.
出处 《计算机应用研究》 CSCD 北大核心 2017年第7期1985-1988,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61272509 61402331 61402332)
关键词 推荐系统 美食推荐 协同过滤 遗忘函数 信任 recommendation system food recommendation collaborative filtering forgotten function trust
  • 相关文献

参考文献8

二级参考文献192

  • 1黄润才,周集良,孙道清,曹奇英.普适计算中上下文依赖的主动任务发现[J].计算机应用研究,2009,26(3):843-845. 被引量:1
  • 2崔亚洲,段刚.基于Web日志和商品分类的协同过滤推荐系统[J].电子科技大学学报(社科版),2006,8(3):39-42. 被引量:5
  • 3李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 4Liu JG, Zhou T, Wang BH. Research progress of personalized recommendation system. Progress in Natural Science, 2009,19(1): 1-15 (in Chinese with English abstract).
  • 5Ma H, Yang HX, Lyu MR, King I. SoRec: Social recommendation using probabilistic matrix factorization. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2008. 978-991. [doi: 10.1145/1458082.1458205].
  • 6Ma H, King I, Lyu MR. Learning to recommend with social trust ensemble. In: Proc. of the Annual Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM Press, 2009. 203-210. [doi: 10.1145/1571941.1571978].
  • 7Guo L, Ma J, Chen ZM, Jiang HR. Learning to recommend with social relation ensemble. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2012. 2599-2602. [doi: 10.1145/2396761.2398701].
  • 8Jamali M, Ester M. TrustWalker: A random walk model for combining trust-based and item-based recommendation. In: Proc. of the ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. ACM Press, 2009. 397-405. [doi: 10.1145/1557019. 1557067].
  • 9Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. In: Proc. of the ACM Conf. on Recommender Systems. ACM Press, 2010. 135-142. [doi: 10.1145/1864708.1864736].
  • 10Zhou TC, Ma H, King I, Lyu MR. UserRec: A user recommendation framework in social tagging systems. In: Proc. of the 24th AAAI Conf. on Artificial Intelligence. AAAI Press, 2010. 1486-1491.

共引文献517

同被引文献94

引证文献14

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部