期刊文献+

碱金属在石墨烯表面吸附,迁移行为的第一性原理研究 被引量:8

Adsorption and diffusion behavior of alkali metal adatoms on graphene: a first-principle study
下载PDF
导出
摘要 利用基于密度泛函理论的第一性原理方法计算了3种碱金属(Li,Na,K)在石墨烯表面的吸附性质,迁移行为和电学性质.结果表明:3种碱金属在石墨烯表面的最稳定吸附位都是H位;吸附过程中电荷由碱金属原子向石墨烯片层转移.Li→Na→K,吸附能先减小再增大,吸附的强弱顺序为Li-石墨烯体系>K-石墨烯体系>Na-石墨烯体系;体系的离子性逐渐增强;碱金属原子在石墨烯表面的迁移激活能逐渐降低,迁移行为更容易实现. The adsorption and diffusion behavior of three different alkali metal adatoms (Li, Na and K) at three high symmetry sites on graphene were systematically investigated by the first principle method based on density functional theory (DFT). Electronic properties were calculated. All the three alkali adatoms (Li, Na and K) preferred to adsorb at the H site of graphene. The charge transferred from alkali metal adatoms to graphene when adatoms adsorbed on graphene. Li→Na→K, the adsorption energy initially decreased and then increased with increasing atomic number of alkali metal atom along the group series. The adsorption of Li?graphene system was stronger than that of Na?graphene system and K?graphene system. The degree of ionic property of alkali metal?graphene system increased. The decrease in diffusion energy indicated that diffusion behavior of alkali metal adatoms on the surface of graphene was increasingly easy to take place.
出处 《原子与分子物理学报》 北大核心 2017年第3期555-562,共8页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金(51562031) 内蒙古自然科学基金(2015MS0550) 内蒙古自治区教育厅(NJZY153) 包头科技基金(2012Z1006-2)
关键词 碱金属在石墨烯表面吸附 迁移行为的第一性原理研究 First principle Graphene Adsorption Diffusion
  • 相关文献

参考文献1

二级参考文献32

  • 1Wildgoose G, Banks C, Compton R. Metal nanoparti-cles and related materials supported on carbon nano-tubes :methods and applications [ J ]. Small,2006 , 2(2): 182.
  • 2Liu H,Song C, Zhang L, et at. A review of anode ca-talysis in the direct methanol fuel cell [ J]. J. PowerSources, 2006, 155(2) : 95.
  • 3Meyer J. Carbon sheets an atom thick give rise to gra-phene dreams [J]. Science, 2009, 324(5929) : 875.
  • 4Lee C, Wei X, Kysar J W, ei al. Measurement of theelastic properties and intrinsic strength of monolayergraphene [ J]. Science, 2008 , 321(5887) : 385.
  • 5Biswas C, Lee Y H, Graphene versus carbon nano-tubes in electronic devices [ J ]. Adv. Funct. Mater.,2011, 21(20): 3806.
  • 6Novoselov K,Geim A,Morozov S,et al. Two - di-mensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065) : 197.
  • 7Machado B F, Serp P. Graphene - based materials forcatalysis [J]. Catal. ScL Technol. , 2012,2(1); 54.
  • 8Li Y, Tang L,Li J. Preparation and electrochemicalperformance for methanol oxidation of Pt/graphenenanocomposites [ J ]. Electrochem. Commun.,2009,11(4) : 846.
  • 9Li Y, Gao W, Ci L, et al. Catalytic performance of Ptnanoparticles on reduced graphene oxide for methanolelectro - oxidation [ J]. Carbon, 2010,48(4) : 1124.
  • 10Stankovich S, Dikin D, Dommett G,et al. Graphene-based composite materials [ J]. Nature, 2006,442(7100) : 282.

共引文献12

同被引文献44

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部