摘要
建立了一类Littlewood-Paley g_λ~*-函数在Campanato空间上的有界性.并证明了若上述函数在一点有限,则其在Rn上几乎处处有限,且在Campanato空间上是有界的.
This paper established the boundedness for a class on Campanato spaces.It is proved that if the above functions almost everywhere in R .Moreover,the above operators are of intrinsic Littlewood-Paley gλ -functions are finite for one point, then they are finite bounded on Campanato spaces.
出处
《安徽工程大学学报》
CAS
2017年第2期57-63,共7页
Journal of Anhui Polytechnic University
基金
安徽省自然科学基金资助项目(1408085MA01)