摘要
证明了如下定理:设G是有限群,π_e(G)是G中元素的阶之集,如果π_e(G)∩{2}=Ф,或π_e(G)∩{3,4}=Ф,或π_e(G)∩{3,5}=Ф,则G可解.进一步,用与π_e(G)的交为空集来判定G可解,仅有上述3种情形.
The following theorem is proved: Let G be a finite group and πe (G) be the set of element orders in G. If πe (G)∩ {2} =Ф, or πe (G)∩ {3, 4} = Ф, or πe (G)∩{3, 5} = Ф, then G is solvable. Furthermore, using the intersection with πe (G) being empty set to judge G is solvable or not, only the above three cases.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第6期1-4,共4页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金项目(11171364
11271301
11671063)
重庆市基础科学与前沿研究技术专项(一般)项目(cstc2016jcyjA0065)
关键词
有限群
可解性
元的阶之集
finite group
solvability
set of element orders