期刊文献+

氧化石墨烯纳米载体的生物相容性研究进展 被引量:4

Research Progress on Biocompatibility of Graphene Oxide as a Nanocarrier
原文传递
导出
摘要 氧化石墨烯是一种石墨烯的含氧衍生物,作为新型碳纳米材料,氧化石墨烯具有高载药能力、高度可修饰性及独特的光学性质等特性,在药物传递、生物成像及光热治疗等方面表现出了巨大的应用潜力。然而,随着氧化石墨烯在生物医学领域的广泛研究,其生物相容性问题成为其进入临床应用的主要障碍。基于此,本文系统综述了氧化石墨烯在体外和体内的生物相容性,以及表面修饰如何影响其在体内外的毒性。通过分析氧化石墨烯的理化性质、使用剂量和表面修饰等对细胞和实验动物毒性的影响,为开发高效、安全的新型纳米载体提供参考。 Graphene oxide is a kind of oxygenated derivative of grapheme, as a new type of carbon nanomaterial, it has various characteristics: high drug loading capacity, high ability of being modified, and unique optical property, thus it shows great application potential in the aspects of drug delivery, bio-imaging, photothermal therapy, and so on. However, with more and more researches of graphene oxide in the biomedical field, its biocompatibility becomes a main obstacle for its clinical application. Therefore, this paper reviews the biocompatibility of graphene oxide in vitro and in vivo, and how its toxicity in vitro and in vivo is influenced by the surface modifier. Through analyzing the influence of such toxicity on ceils and animals subjected to studies, which is caused by physicochemical properties of graphene oxide, its dosage, and surface modification, etc., it provides reference for the development of effective and safe new nanocarriers.
出处 《中国现代应用药学》 CAS CSCD 2017年第5期777-782,共6页 Chinese Journal of Modern Applied Pharmacy
基金 浙江省中医药科技计划项目(2016ZA130)
关键词 氧化石墨烯 药物递送 生物相容性 肿瘤 光动力疗法 graphene oxide drug delivery bioeompatibility tumor photodynamic therapy
  • 相关文献

参考文献2

二级参考文献47

  • 1Ch.P(2010)Vol.Ⅱ(中国药典2010年版.二部[S].2010:973-974.
  • 2Albanese A, Tang P S, Chan W C W, 2012. The effect of nanoparticle size, shape, and surface chemistry on biolog-ical systems. Annual Review of Biomedical Engineering, 14(1): 1-16.
  • 3Bai Y H, Zhang Y, Zhang J P, Mu Q X, Zhang W D, Butch E R et al., 2010. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nature Nanotechnology, 5(9): 683-689.
  • 4Cagle D W, Kennel S J, Mirzadeh S, Alford J M, Wilson L J, 1999. In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proceedings of the National Academy of Sciences of the United States of America, 96(9): 5182-5187.
  • 5Chambers E, Mitragotri S, 2007. Long circulating nanoparticles via adhesion on red blood cells: Mechanism and extended circulation. Experimental Biology and Medicine, 232(7): 958-966.
  • 6Ding Y F, Yang L, Zhang S Y, Wang Y, Du Y L, Pu J et al., 2012. Identification of the major functional proteins of prokaryotic lipid droplets. Journal of Lipid Research, 53(3): 399-411.
  • 7Duch M C, Budinger G R S, Liang Y T, Soberanes S, Urich D, Chiarella S E et al., 2011. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Letters, 11(12): 5201-5207.
  • 8Feng L Z, Liu Z A, 2011. Graphene in biomedicine: Opportuni-ties and challenges. Nanomedicine, 6(2): 317-324.
  • 9Gaumet M, Vargas A, Gurny R, Delie F, 2008. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. European Journal of Pharmaceutics And Biopharmaceutics, 69(1): 1-9.
  • 10Geim A K, 2009. Graphene: Status and prospects. Science, 324(5934): 1530-1534.

共引文献9

同被引文献36

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部