期刊文献+

基于VMD和对称差分能量算子解调的滚动轴承故障诊断方法 被引量:8

Fault Diagnosis of Rolling Bearings based on VMD and Symmetric Difference Energy Operator Demodulation
原文传递
导出
摘要 针对滚动轴承早期故障振动信号非平稳、强噪声,故障频率难提取的问题,提出了基于变分模态分解(Variational Mode Decomposition,VMD)和对称差分能量算子解调的滚动轴承故障诊断方法。首先,利用VMD方法将滚动轴承待分析信号分解成若干个模态分量;其次,根据峭度最大准则来选取被对称差分能量算子解调的模态分量,解调后获取待分析信号的幅值、频率信息并计算包络谱。实验结果表明:与传统能量算子相比,所提方法能突显故障特征频率并有效抑制虚假干扰频率,更有利于滚动轴承故障诊断。 Aiming at the problem of roiling bemiring early fault vibration signals non noise, failure frequency is difficult to extract. A fault diagnosis method of rolling bearings-stationary and high based on the Variational Mode Decomposition (VMD) and symmetric difference energy operator is proposed. First of all, the rolling bearing vibration signals are decomposed by VMD algorithm, a number of modal components are got. Secondly, according to the maximum kurtosis criterion, the modal component demodulated by symmetric difference energy operator is selected. Finally, a demodulated signal amplitude and frequency information are obtained and the envelope spectrum is calculated. The experimental results show that compared with the traditional energy operator, the proposed method can effectively extract the fault feature, and can restrain the false interference frequency and highlight the fault characteristic frequency, more conducive to roller bearing fault diagnosis.
出处 《机械传动》 CSCD 北大核心 2017年第5期143-147,共5页 Journal of Mechanical Transmission
基金 国家自然科学基金(51565046) 内蒙古自然科学基金(2017MS0509) 内蒙古科技大学创新基金(2015QDL12)
关键词 变分模态分解 对称差分能量算子 峭度 滚动轴承 故障诊断 Variational mode decomposition Symmetric difference energy operator Kurtosis Rolling bearing Fault diagnosis
  • 相关文献

参考文献10

二级参考文献93

共引文献704

同被引文献46

引证文献8

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部