期刊文献+

交互式多模型粒子滤波优化重采样算法 被引量:8

Interacting multiple model particle filter optimization resampling algorithm
下载PDF
导出
摘要 针对标准交互式多模型粒子滤波(IMMPF)算法中存在粒子退化及多样性匮乏问题,提出了交互式多模型粒子滤波优化重采样(IMMPFOR)算法,利用线性优化理论改善模型中具有小权值的粒子精度。该算法的新颖性体现在给定量测信息条件下,利用线性优化方法及模型交互概率将每个模型中拥有小权值的粒子替换成新的粒子。新的粒子既包含本模型中粒子信息,又包含了本模型与其他模型交互后的粒子信息。目标跟踪的仿真结果证明:每个模型新产生的粒子集合可以准确地近似真实状态后验概率密度函数,系统的估计精度与标准IMMPF算法相比有较大提升。 For the problem of particles degeneration and lack of diversity in standard interacting multiple model particle filter (IMMPF) algorithm, a novel algorithm is presented, which is referred to as interacting multiple model particle filter optimization resampling (IMMPFOR) algorithm using linear optimization method in each model to improve the small-weight particles. The novelty of this algorithm lies in replacing the small-weight particles with new particles after the measurement information is received. New particles contain not only the information of the particles in the current model, but also the information of the particles in interacting models. The tracking simulation results show that the posterior probability density function of each model with newly generated set of particles accurately approximates the real state posterior probability density function, and the estimation accuracy of IMMPFOR is higher than the standard IMMPF algorithm.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2017年第5期865-871,共7页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(61573112)~~
关键词 交互式多模型 粒子滤波 线性优化 重采样 粒子退化 interacting multiple models particle filter linear optimization resampling particle degeneration
  • 相关文献

参考文献3

二级参考文献41

  • 1胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3Kotecha J H,Djuric P M.Gaussian particle filtering[J].IEEE Transactions on Signal Processing,2003,51(10),2592-2601.
  • 4Sanjeev M,Maskell S.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 5Doucet A,Godsill S.On sequential Monte Carlo sampling methods for Bayesian filtering[R].Department of Engineering University of Cambridge,UK,Technical Report.1998.1-36.
  • 6Bergman N,Recursive bayesian estimation:Navigation and tracking applications[D].Linkoping,Sweden:Linkoping Univ,1999.
  • 7Liu J S,Chen R,Sequential Monte Carlo methods for dynamical systems[J].J Amer Statist Assoc,1998,93:1032-1044.
  • 8Kitagawa G.Monte Carlo filter and smoother for non-Gaussian nonlinear state space models[J].J Comput Graph Statist,1996,5 (1):1-25.
  • 9Belviken E,Acklam P J.Monte Carlo filters for nonlinear state estimation[J].Automatica,2001,37(1):177-183.
  • 10Liu J S,Chen R.Sequential Monte Carlo methods for dynamical systems[J].Journal of the American Statistical Association,1998,93 (5):1032-1044.

共引文献57

同被引文献55

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部