期刊文献+

基于局部Hilbert边际谱的自动倾斜器轴承故障诊断 被引量:1

Fault Diagnosis Method of Swash-plate Bearing Based on Local Hilbert Marginal Spectrum
下载PDF
导出
摘要 针对直升机操纵系统重要承力部件自动倾斜器轴承健康监测与故障诊断的需求,研究相应健康监测技术及其故障诊断方法,从而为直升机结构健康监测状态评估与使用管理提供依据。经验模态分解方法作为一种自适应时频分析方法,非常适用于处理复杂非平稳信号,提出了一种基于局部Hilbert边际谱的直升机自动倾斜器轴承故障诊断方法。该方法首先将振动信号进行小波包分解;然后对重构降噪信号采用Hilbert变换进行包络分析得到包络信号;最后对包络信号进行EMD分解,选取有效IMF集计算局部Hilbert边际谱,提取故障特征。在此基础上,构建了某型直升机自动倾斜器故障诊断试验系统。研究表明,该诊断方法合理、可行。 According to the demand of health monitoring and fault diagnosis on the important load bearing components swash plate bearing of the helicopter handing system, it is necessary to study the corresponding health monitoring technolo- gy and its fault diagnosis method, to provide the assessment reference for structure health state and the usage management of the helicopter. Empirical Mode Decomposition (EMD) method as an adaptive time-frequency analysis method which is very suitable for dealing with non-stationary signal, and a fault diagnosis method is given for the helicopter swash plate bear- ing based on the local Hilbert marginal spectrum. Firstly, wavelet packet is used for decomposition of the vibration signal. Then, the Hilbert transform is used for envelope analysis to obtain the envelope signal of the de-noised reduction signal. Fi- nally, the result is decomposed by EMD, and the effective IMF is selected to calculation the local Hilbert marginal spectrum and extract the fault feature. On this basis, a fault diagnosis test system for a type of helicopter swash plate bearing is con- structed. Research results show that the method is reliable and applicable.
出处 《新技术新工艺》 2017年第6期67-72,共6页 New Technology & New Process
关键词 自动倾斜器轴承 故障诊断 Hilbert边际谱 EMD分解 swash-plate bearing, fault diagnosis, Hilbert marginal spectrum, empirical mode decomposition
  • 相关文献

参考文献4

二级参考文献36

  • 1石林锁.滚动轴承故障检测的改进包络分析法[J].轴承,2006(2):36-39. 被引量:17
  • 2HaganMT DemuthHB BealeMH 戴葵 宋辉 潭明峰 等译.神经网络设计[M].北京:机械工业出版社,2002..
  • 3冯象初,甘小冰,宋国乡.数饵泛函与小波理论[M].西安:西安电子科技大学出版社,2003.
  • 4高成.Matlab小波分析与应用[M].北京:国防工业出版社,2007.
  • 5McFadden P D, Smith J D. Model for the vibration produced by a single point defect in a rolling element bearing[J]. Journal of Sound and Vibration, 1984,96 (1) : 69-82.
  • 6Dwyer R F. Detection of non-gaussian signals by fre- quency domain kurtosis estimation [C]//IEEE Inter- national Conference on Acoustics, Speech and Signal Processing-Proceedings. Boston, USA : [s. n. ], 1983 : 607-610.
  • 7Antoni J. The spectral kurtosis: a useful tool for characterising non-stationary signals [J]. Mechanical Systems and Signal Processing, 2006,20(2) : 282-307.
  • 8Antoni J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007,21 ( 1 ) : 108-124.
  • 9Antoni J, Randall R B. The spectral kurtosis: appli- cation to the vibratory surveillance and diagnostics of rotating machines[J]. Mechanical Systems and Signal Processing, 2006,20 (2) : 308-331.
  • 10Cheng Junsheng, Yu Dejie, Yang Yu. A fault diagno- sis approach for roller bearings based on EMD method and AR model [J]. Mechanical Systems and Signal Processing, 2006, 20 (2) : 350-362.

共引文献134

同被引文献15

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部