摘要
余热排出泵长期在高温高压环境下运行,其结构的可靠性对整个机组的安全运行有着重要的影响。该文采用单向流固耦合方法研究了几种常用材料及增加叶轮盖板厚度对转子结构动力学特性的影响,同时对比了常温和高温下叶轮的振动特性。结果表明,余热排出泵高温运行时,叶轮的第1阶固有频率为394.17 Hz,较常温下升高了2.28%,远高于叶轮叶片通过频率。在各阶模态振型下,1Cr13MoS叶轮固有频率最大,ZG225-450叶轮固有频率最小。设计工况和偏工况下叶轮的应力及变形变化趋势基本一致,叶轮的变形随半径的增加而不断增大,最大变形量出现在后盖板叶轮出口处。叶轮的应力分布不均,最大应力均出现在叶片尾缘与后盖板接合处。沿着前盖板和叶片接合线,应力的峰值随前盖板厚度增加而减小。沿着后盖板和叶片接合线,增加后盖板厚度明显减小了应力峰值。高温和常温应力变化趋势基本一致,但是高温下叶轮应力明显高于常温。尤其在叶轮进口处附近,高温应力相对于常温应力增加超过300%。该研究结果为下一步进行更加复杂的动力学分析、疲劳分析以及结构优化提供参考。
In recent years, nuclear power has drawn increased attention because of its high efficiency and low pollution. Thus, a rising number of nuclear power stations are being constructed. The safety of nuclear station operations is mainly guaranteed by the residual heat removal system. Residual heat removal pumps (RHRP) are operated when the nuclear main pump stops working and the nuclear station needs to be maintained. The RHRP works in a complex environment, and its work status directly affects the performance of the entire plant. To ensure the reliability of the RHRP, the vibration characteristics of the rotor were analyzed using fluid-structure interaction theory. Stress and deformation analysis by partitioned solution for an impeller in a moving fluid was performed, and modal analysis of the impeller by monolithic solution was conducted in still fluid. For the partitioned method, there are two strategies for coupled solutions of dynamic fluid and structure interaction, one-way coupling and two-way coupling. Two-way coupling is typically used for large structural deformations. One-way coupling is suitable for the small structural deformation cases. In pump machinery, the impeller vibration caused by unsteady flow results in small deformations. Additionally, the feedback of the impeller motion onto the flow is small and therefore, can be neglected for most cases. Consequently, one-way coupling has been chosen, in which dynamic forces are transferred to the structure through the interface in a single direction at every time step. To understand the influence of the impeller shroud thickness on the resulting vibration characteristics, three impeller modifications were investigated and compared to the initial geometry under different flow rates. Moreover, five commonly used materials for an impeller were also evaluated. The three-dimensional turbulent flow was modeled utilizing a SST k-ω turbulence model, and the numerical results were verified by the experimental data. The results showed that due to local structural differences between the pumps used in the numerical calculation model and the test measurement, as well as other effects, such as mesh quality, it was inevitable that there would be differences between the numerical calculation and the test measurements. However, the overall external characteristics of the numerical simulation were generally consistent with the performance of the test measurements, indicating that the flow-field calculation model can accurately predict its performance. By comparing with impellers adapted from four other materials and different shroud thicknesses, the vibration modes of the impellers were basically same for each order; however, the natural frequencies differed to some extent. The first order frequency of original impeller rotor was 394.17 Hz at hot condition and increased by 2.28% compared with cold condition, which was higher than blade passing frequency. Natural frequency of 1Crl3MoS was the highest among employed materials for each order mode, while ZG225-450 was the lowest. At design and off-design flow rates, the stress and displacement fields were similar. The displacement grew from the hub to the outer diameter, and each blade passage had a local maximum on the rear shroud. Moreover, the higher equivalent stress values can be observed in the junction between blade and shroud. Under three operating points, the peak values of stresses occurred in the middle of the junction between shroud and blade pressure side. Decreasing the head caused a significant reduction at the beginning of the blade passage. The stresses along defined paths were almost independent of the front shroud thickness, but peak values could be significantly reduced with a thicker rear shroud. The trendy of stress distribution between hot and cold condition was basically same. However, stress of hot condition was higher than cold one. Especially nearby the leading edge of the impeller, stress of hot condition increased more than 300%, compared to cold one. The results provide a theoretical basis for improving system performance and further study for more complicated dynamic analysis and fatigue analysis.
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2017年第9期76-83,共8页
Transactions of the Chinese Society of Agricultural Engineering
基金
国家科技支撑计划项目(2014BAB08B01)
国家自然科学基金青年基金(51409123)
江苏省自然科学基金青年基金(BK20140554)
江苏大学"青年骨干教师培养工程"
关键词
泵
叶轮
动力学
余热排出泵
盖板厚度
pumps
impellers
kinetics
residual heat removal pump
shroud thickness