期刊文献+

二阶脉冲微分方程边值问题解的存在性

Boundary Value Problems for Delay Differential Equations with Parameter
下载PDF
导出
摘要 本文研究了二阶脉冲微分方程的边值问题,利用Schauder不动点定理证明了带有时滞和时超的二阶脉冲微分方程解的存在性。 We prove the existence of solutions for impulsive second order differential equations with delays and advanced by using the fixed point theorem of Schauder.
作者 蹇玲玲
出处 《佳木斯大学学报(自然科学版)》 CAS 2017年第3期497-499,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 脉冲方程 时滞 时超 不动点 impulsive equation delay advanced fixed point
  • 相关文献

参考文献2

二级参考文献13

  • 1Guo Dajun. Existence of solutions of boundary value problems for second-order impulsive differential equation in Banach spaces[J]. J Math Anal Appl, 1994, 181: 407-421.
  • 2Guo Dajun, Sun Jingxian, Liu Zhaoli. Functional Methods for Nonlinear Ordinary Differential Equations[M].Jinan: Shandong Science and Technology Press, 1995.
  • 3Gupta C P. A sharper condition for solvability of a three-point boundary value problem[J]. J Math Anal Appl,1997, 205: 586-597.
  • 4Guo Dajun. Nonlinear Functional Analysis[M]. Jinan: Shandong Science and Technology Press, 1985.
  • 5Zu Li, Lin Xiaoning, Jiang Daqing. Existence Theory for Single and Multiple Solutions to Singular Boundary Value Problems for Second Order Impulsive Differential Equations. J. Topological Methods in Nonlinear Analysis, 2007, 30: 171-191.
  • 6Alberto Cabada, Jan Tomecek. Extremal Solution for Nonlinear Functional φ-Laplacian Impulsive Equations. J. Nonlinear Analysis, 2007, 62: 827-841.
  • 7Hristova S G, Bainov D D. Monotone-iterative Techniques of V. Lakshmikantham for a Boundary value Problem for Systems of Impulsive Differential-difference Equations. J. J. Math. Anal. Appl., 1996, 1997: 1-13.
  • 8Wei Z. Periodic Boundary Value Problems for Second Order Impulsive Integrodifferential Equations of Mixed Type in Banach Spaces. J. J. Math. Anal. Appl., 1995, 195: 214-229.
  • 9Lakshmik ntham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. Singapore: J. World Scientific, 1989.
  • 10Agarwal R P, O'Regan D. Multiple Nonnegative Solutions for Second Order Impulsive Differential Equations. J. Appl. Math. Comput., 2000, 114: 51-59.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部