摘要
通过将半无限规划的无穷多个不等式约束条件等价地转化为有限个等式约束条件问题,将半无限规划问题转化为只含有一个不等式约束的经典优化问题.针对转化后的非线性规划问题提出了含松弛因子的二次规划子问题的序列二次规划算法.在一定条件下,算法的收敛效果比原来的算法得到的结果更好.
The infinite inequality constrainted conditions of semi-infinite programming is transformed into finite equality constraints, and then the semi-infinite programming is put into classical optimization problem with an inequality constraints. The sub-problems of quadratic programming with relaxation factor for nonlinear programming after the conversion is put forward. Convergence effect of algorithm is better than the original algorithm under certain contains.
出处
《宁夏大学学报(自然科学版)》
CAS
2017年第2期139-142,共4页
Journal of Ningxia University(Natural Science Edition)
基金
内蒙古自然科学基金资助项目(2015MS0108)
包头师范学院青年科学研究基金资助项目(BSYKJ2015-20)
关键词
半无限规划
SQP算法
收敛
semi-infinite programming
SQP algorithm
convergence