摘要
利用灰色关联分析法筛选出表征混凝土抗压强度的重要因素指标,并以选取的因素指标为输入变量、以抗压强度为输出变量,创建极限学习机(ELM)模型,克服了冗余因素对模型精度的影响。实例分析表明经指标优化选择的ELM模型具有较高的精度,对抗压强度的预测效果明显优于未经指标筛选的ELM模型,也远好于支持向量机的预测效果,为混凝土抗压强度预测提供了一种新思路。
The gray correlation analysis method is used to select the important factors to characterize the compressive strength of concrete. Extreme learning machine(ELM) model is established by using the selected factor as the input variable and the compressive strength as the output variable, which overcomes the influence of redundant factors on the accuracy of the model.An example analysis shows that the ELM model based on index optimization has higher accuracy,The prediction effect of compressive strength is superior to ELM model without index selection, and it is much better than predictive effect of support vector machine(SVM), which provides a new idea for concrete compressive strength prediction.
出处
《水泥工程》
CAS
2017年第3期19-22,共4页
Cement Engineering
基金
兰州市科学技术局计划项目(兰财建发[2015]85号)
兰州石化职业技术学院科技资助项目(院发[2015]69号)
甘肃省科技厅计划项目(1204GKCA004)
甘肃省财政厅专项资金立项资助(甘财教[2013]116号)
关键词
混凝土抗压强度
灰色关联分析
极限学习机
强度预测
compressive strength of concrete
grey relational analysis
extreme learning machine
strength prediction